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GAN first introduction
GANs are a class of unsupervised generative models which 
implicitly model the data density.
There are two "competing" neural networks:
• The Generator wants to learn to generate realistic images 

that are indistinguishable from the real data.
• input: Gaussian noise random sample. output: a (higher 

dimensional) datapoint
• The Discriminator wants to tell the real & fake images apart.

• input: datapoint/image, output: probability assigned to 
datapoint being real. Think binary classifier.



GAN first introduction
The typical analogy: the generator is like a counterfeiter trying 

to look like real, the discriminator is the police trying to tell 
counterfeits from the real work.



GAN first introduction
The key novelty of GANs is to pass the error signal (gradients) 

from the discriminator to the generator: the generator 
neural network uses the information from the competing 
discriminator neural network to know how to produce more 
realistic output.



Define the neural networks in pytorch

import sys
print(sys.version) # python 3.7
import torch
import torch.nn as nn
import torchvision.datasets
import torchvision.transforms as transforms
import torch.nn.functional as F
import torchvision.utils as vutils
print(torch.__version__) # 1.4.0



Define the neural networks in pytorch

%matplotlib inline
import matplotlib.pyplot as plt

def show_imgs(x, new_fig=True):
    grid = vutils.make_grid(x.detach().cpu(), nrow=8, normalize=True, pad_value=0.3)
    grid = grid.transpose(0,2).transpose(0,1) # channels as last dimension
    if new_fig:
        plt.figure()
    plt.imshow(grid.numpy())



Defining the neural networks
Let's define a small 2-layer fully connected neural network (so one hidden layer) for 

the discriminator D:
class Discriminator(torch.nn.Module):
    def __init__(self, inp_dim=784):
        super(Discriminator, self).__init__()
        self.fc1 = nn.Linear(inp_dim, 128)
        self.nonlin1 = nn.LeakyReLU(0.2)
        self.fc2 = nn.Linear(128, 1)
    def forward(self, x):
        x = x.view(x.size(0), 784) # flatten (bs x 1 x 28 x 28) -> (bs x 784)
        h = self.nonlin1(self.fc1(x))
        out = self.fc2(h)
        out = torch.sigmoid(out)
        return out



Defining the neural networks
And a small 2-layer neural network for the generator G. G takes a 100-dimensional 

noise vector and generates an output of the size matching the data.
class Generator(nn.Module):
    def __init__(self, z_dim=100):
        super(Generator, self).__init__()
        self.fc1 = nn.Linear(z_dim, 128)
        self.nonlin1 = nn.LeakyReLU(0.2)
        self.fc2 = nn.Linear(128, 784)
    def forward(self, x):
        h = self.nonlin1(self.fc1(x))
        out = self.fc2(h)
        out = torch.tanh(out) # range [-1, 1]
        out = out.view(out.size(0), 1, 28, 28)# convert to image 
        return out
    



Defining the neural networks

Note that the dimensions of D input and G output were defined for MNIST data.

# instantiate a Generator and Discriminator according to their class 
definition.
D = Discriminator()
print(D)
G = Generator()
print(G)



Testing the neural networks (forward pass)

# A small batch of 3 samples, all zeros.
samples = torch.randn(5, 1, 28, 28) # batch size x channels x width x height
# This is how to do a forward pass (calls the .forward() function under the hood)
D(samples)



Testing the neural networks (forward pass)

Things to try:

What happens if you change the number of samples in a batch?
What happens if you change the width/height of the input?
What are the weights of the discriminator? You can get an iterator over them 
with .parameters() and .named_parameters()

for name, p in D.named_parameters():
    print(name, p.shape)



Testing the neural networks (forward pass)

We will think of the concatentation of all these discriminator weights in one big vector as  θD .
Similarly we name the concatentation of all the generator weights in one big vector  θG .

for name, p in G.named_parameters():
    print(name, p.shape)

# A small batch of 2 samples, random noise.
z = torch.randn(2, 100)
# This is how to do a forward pass (calls the .forward() function under the hood)
x_gen = G(z)
x_gen.shape

z = torch.randn(2, 100)
show_imgs(G(z))



Loading the data and computing forward pass

# let's download the Fashion MNIST data, if you do this locally and you downloaded before,
# you can change data paths to point to your existing files
# dataset = torchvision.datasets.MNIST(root='./MNISTdata', ...)
dataset = torchvision.datasets.FashionMNIST(root='./FashionMNIST/',
                       transform=transforms.Compose([transforms.ToTensor(),
                                                     transforms.Normalize((0.5,), (0.5,))]),
                       download=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=True)



Loading the data and computing forward pass

Dataset and DataLoader are abstractions to help us iterate over the data in random order.

Let's look at a sample:

ix=149
x, _ = dataset[ix]
plt.matshow(x.squeeze().numpy(), cmap=plt.cm.gray)
plt.colorbar()



Loading the data and computing forward pass

Feed the image into the discriminator; the output will be the probability the (untrained) 
discriminator assigns to this sample being real.

# for one image:
Dscore = D(x)
Dscore

# How you can get a batch of images from the dataloader:
xbatch, _ = iter(dataloader).next() # 64 x 1 x 28 x 28: minibatch of 64 samples
xbatch.shape
D(xbatch) # 64x1 tensor: 64 predictions of probability of input being real.
D(xbatch).shape

show_imgs(xbatch)



The min-max game
We introduced and defined the generator G, the discriminator D, and the dataloader 
which will give us minibatches of real data. 

The Generator and Discriminator have competing objectives, they are "adversaries".
The Discriminator wants to assign high probability to real images and low probability 
to generated (fake) images
The Generator wants its generated images to look real, so wants to modify its 
outputs to get high scores from the Discriminator
We will optimize both alternatingly, with SGD steps (as before): optimize  θD  the 
weights of  D(x,θD) , and  θG  the weights of  G(z,θG) .
Final goal of the whole min-max game is for the Generator to match the data 
distribution:  pG(x)≈pdata(x) .



The min-max game
Now what are the objective functions for each of them? As mentioned in the 
introduction, the objective for the discriminator is to classify the real images as real, 
so  D(x)=1 , and the fake images as fake, so  D(G(z))=0 . This is a typical binary 
classification problem which calls for the binary cross-entropy (BCE) loss, which 
encourages exactly this solution.

For G we just try to minimize the same loss that D maximizes. See how G appears 
inside D? This shows how the output of the generator G is passed into the 
Discriminator to compute the loss.



The min-max game
This is the optimization problem:



The min-max game

We will do a single SGD step alternatingly to maximize D, then minimize G. In fact for 
G we use a modified (non-saturing) loss  −logD(G(z)) . Different modifications of the 
loss and the relation to the distance between distributions  pdata  and  pG  became 
a topic of research over the last years.



The min-max game
# Remember we have defined the discriminator and generator as:
D = Discriminator()
print(D)
G = Generator()
print(G)
# Now let's set up the optimizers
optimizerD = torch.optim.SGD(D.parameters(), lr=0.01)
optimizerG = torch.optim.SGD(G.parameters(), lr=0.01)

# and the BCE criterion which computes the loss above:
criterion = nn.BCELoss()



# STEP 1: Discriminator optimization step
x_real, _ = iter(dataloader).next()
lab_real = torch.ones(64, 1)
lab_fake = torch.zeros(64, 1)
optimizerD.zero_grad() # reset accumulated gradients from previous iteration

D_x = D(x_real)
lossD_real = criterion(D_x, lab_real)

z = torch.randn(64, 100) # random noise, 64 samples, z_dim=100
x_gen = G(z).detach()
D_G_z = D(x_gen)
lossD_fake = criterion(D_G_z, lab_fake)

lossD = lossD_real + lossD_fake
lossD.backward()
optimizerD.step()



The min-max game
Some things to think about / try out / investigate:

what are the mean probabilities for real and fake? print them and see how they 
change when executing the cell above a couple of times. Does this correspond to 
your expectation?
can you confirm how the use of the criterion maps to the objective stated above?
when calling backward, the derivative of the loss wrt what gets computed?
what does .detach() do? Are the Generator parameters' gradients computed?



The min-max game
# STEP 2: Generator optimization step
# note how only one of the terms involves the Generator so this is the only one that 
# matters for G.  reset accumulated gradients from previous iteration
optimizerG.zero_grad()

z = torch.randn(64, 100) # random noise, 64 samples, z_dim=100
D_G_z = D(G(z))
lossG = criterion(D_G_z, lab_real) # -log D(G(z))

lossG.backward()
optimizerG.step()

print(D_G_z.mean().item())



The min-max game
Again run this cell a couple of times. See how the generator increases its 
Discriminator score?

Some more things to ponder:

Do the Generator parameters now receive gradients? Why (compared to previous 
loop)?
From the definition of BCE loss confirm that this comes down to  −logD(G(z))



the full training loop
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print('Device: ', device)
# Re-initialize D, G:
D = Discriminator().to(device)
G = Generator().to(device)
# Now let's set up the optimizers (Adam, better than SGD for this)
optimizerD = torch.optim.SGD(D.parameters(), lr=0.03)
optimizerG = torch.optim.SGD(G.parameters(), lr=0.03)
# optimizerD = torch.optim.Adam(D.parameters(), lr=0.0002)
# optimizerG = torch.optim.Adam(G.parameters(), lr=0.0002)
lab_real = torch.ones(64, 1, device=device)
lab_fake = torch.zeros(64, 1, device=device)



the full training loop
# for logging:
collect_x_gen = []
fixed_noise = torch.randn(64, 100, device=device)
fig = plt.figure() # keep updating this one
plt.ion()



the full training loop
for epoch in range(3): # 10 epochs
    for i, data in enumerate(dataloader, 0):
        # STEP 1: Discriminator optimization step
        x_real, _ = iter(dataloader).next()
        x_real = x_real.to(device)
        # reset accumulated gradients from previous iteration
        optimizerD.zero_grad()



the full training loop
        D_x = D(x_real)
        lossD_real = criterion(D_x, lab_real)

        z = torch.randn(64, 100, device=device) # random noise, 64 samples, z_dim=100
        x_gen = G(z).detach()
        D_G_z = D(x_gen)
        lossD_fake = criterion(D_G_z, lab_fake)

        lossD = lossD_real + lossD_fake
        lossD.backward()
        optimizerD.step()



the full training loop
        # STEP 2: Generator optimization step
        # reset accumulated gradients from previous iteration
        optimizerG.zero_grad()

        z = torch.randn(64, 100, device=device) # random noise, 64 samples, z_dim=100
        x_gen = G(z)
        D_G_z = D(x_gen)
        lossG = criterion(D_G_z, lab_real) # -log D(G(z))

        lossG.backward()
        optimizerG.step()



the full training loop
        if i % 100 == 0:
            x_gen = G(fixed_noise)
            show_imgs(x_gen, new_fig=False)
            fig.canvas.draw()
            print('e{}.i{}/{} last mb D(x)={:.4f} D(G(z))={:.4f}'.format(
                epoch, i, len(dataloader), D_x.mean().item(), D_G_z.mean().item()))
    # End of epoch
    x_gen = G(fixed_noise)
    collect_x_gen.append(x_gen.detach().clone())

for x_gen in collect_x_gen:
    show_imgs(x_gen)



Deep convolutional GAN

The DCGAN is one of the early models that demonstrated how to 
build a GAN model that learns by itself and generates meaningful 
images.



DCGAN



DCGAN



generator network

The generator network takes a random vector of fixed 
dimension as input, and applies a set of transposed 
convolutions, batch normalization, and ReLu activation to 
it, and generatesan image of the required size. 



Transposed convolutions
Transposed convolutions are also called fractionally 
strided convolutions. They work in the opposite way to 
how convolution works. Intuitively, they try to calculate 
how the input vector can be mapped to higher 
dimensions. 



        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d(     nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d(ngf * 2,     ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d(    ngf,      nc, 4, 2, 1, bias=False),
            nn.Tanh()            # state size. (nc) x 64 x 64
        )



discriminator network

discriminator network uses leaky ReLU is an attempt to 
fix the dying ReLU problem. Instead of the function 
returning zero when the input is negative, leaky ReLU will 
output a very small number like 0.001. In the paper, it is 
shown that using leaky ReLU improves the efficiency of 
the discriminator. 



        self.main = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )




