GNN - I

- Graph Neural Networks

RENMIN UNIVERSITY OF CHINA

Graph neural networks and its variants =

« Graph convolutional network (GCN)
« Graph attention network (GAT)
 Line graph neural network (LGNN)

RENMIN UNIVERSITY OF CHINA

4 é{ﬁtﬁs}'};\
4 2\
= A=A
l g4
(S -
o Y|
."I
A %
~ ri_y

Graph convolutional network (GCN)

* a scalable approach for semi-supervised
learning on graph-structured data that is
based on convolutional neural networks.

* a localized first-order approximation of
spectral graph convolutions.

« scales linearly in the number of graph edges
and learns hidden layer representations that
encode both local graph structure and
features of nodes.

RENMIN UNIVERSITY OF CHINA

Graph convolutional network (GCN)

In spectral graph theory, a spectral convolution on a graph is
defined as the multiplication of a signal s € RN with a filter g in

the Fourier domain, , . .

RENMIN UNIVERSITY OF CHINA

Graph convolutional network (GCN)

We consider a multi-layer Graph Convolutional

Network (GCN) with the following layer-wise
propagation rule (spectral propagation):

RENMIN UNIVERSITY OF CHINA

WERS/ iy
5 2
2 2

4

Y

&
7

Graph convolutional network (GCN) ==

CNN GCN

CHINA

HH1) = ﬂ(ﬁ‘%jﬁl"%fﬂ!}wm)

1. XPAR AT RUMBCKRA: HYY
2. WP AREA E CBCRA: H' = AH
3. Jin5e & T35 il 1P

4. KRB, fndtrack: H''! = D
5. DNNMAL EAEREp ., gl — Y
6. Eafied T BUERE: gl -

cites

cited paper_id

nt

citing_paper_id

CORA Dataset

content

paper_id int

nt

word cited id |varchar

"o~

paper

paper_id

nt

class_label

varchar

The Cora dataset consists of 2708
scientific publications classified into one
of seven classes. Each publication in the
dataset is described by a 0/1-valued
word vector indicating the
absence/presence of the corresponding
word from the dictionary. The dictionary
consists of 1433 unique words.

RENMIN UNIVERSITY OF CHINA

We describe a layer of graph convolutional neural network from a message passing perspective; the
math can be found here. It boils down to the following step, for each node u:

1) Aggregate neighbors' representations h,, to produce an intermediate representation h,,. 2)

Transform the aggregated representation h,, with a linear projection followed by a non-linearity:

h, = f(W,h,).

We will implement step 1 with DGL message passing, and step 2 by PyTorch nn.Moduie .

RENMIN UNIVERSITY OF CHINA

GCN from the perspective of message passing

import dgl

import dgl.function as fn
import torch as th

import torch.nn as nn

import torch.nn.functional as F
from dgl import DGLGraph

gcn_msg = fn.copy_src{src="h', out="m"')
gcn_reduce = fn.sum{msg='m", out="h")

=

z
8
=

RENMIN UNIVERSITY OF CHINA

class GCNLayer(nn.Module):
def _ init (self, in_feats, out feats):
super{GCNLayer, self)._ imit_ ()
celf.linear = nn.Linear{in_feats, out feats

def forward(self, g, feature):
Creating o Local scope so that all the stored ndata and edata
(such as the "~ *h'" ndata below) are automatically popped out
when the scope exits.
with g.local_scope():
g.ndata["h'] = feature
g.update_all{gcn_msg, gcn_reduce)
h = g.ndata['h’]
return self.linear(h)

RENMIN UNIVERSITY OF CHINA

GCN from the perspective of message passin

In DGL, message passing is expressed by two APlIs:

send(edges, message_func) for computing the messages along the given edges.
recv(nodes, reduce_func) for collecting the incoming messages, perform aggregation
and so on.

Although the two-stage abstraction can cover all the models that are defined in the
message passing paradigm, it is inefficient because it requires storing explicit messages.
We fuse the two stages into one kernel so no explicit messages are generated and
stored. To achieve this, we recommend using our built-in message and reduce
functions so that DGL can analyze and map them to fused dedicated kernels.

RENMIN UNIVERSITY OF CHINA

import dgl

import dgl.function as fn

import torch as th

= ... # create o DGLGraph

.ndata['h'] = th.randn({g.number_of nodes(), 18)) # each node has feature size 18
.edata['w"'] = th.randn({g.number_of edges(), 1)) # each edge has feature size 1
collect features from source nodes and aggregate them in destination nodes
.update all(fn.copy u('h', 'm'}, fn.sum('m*, "h_sum'))

multiply source node features with edge weights and aggregate them in destinagtion nodes
.update all(fn.u mul _e{'h', 'w', 'm"'), fn.max('m', "h_max'))

compute edge embedding by multiplying source ond destination node embeddings
.apply edges{fn.u mul v{'h', "h', "W _new'))

oo 4 oo 4 oo 4 0o 0o 0o

fn.copy_u , fn.umul_e , fn.u_mul_v are built-in message functions, while fn.sum and #n.max are
built-in reduce functions. We use v, v and = to represent source nodes, destination nodes, and
edges among them, respectively. Hence, copy_u copies the source node data as the messages,

w_mul_e multiplies source node features with edge features, for example.

Graph attention network (GAT)

« GAT extends the GCN functionality by
deploying multi-head attention among
neighborhood of a node. This greatly
enhances the capacity and expressiveness of
the model.

RENMIN UNIVERSITY OF CHINA

Introducing attention to GCN

» The key difference between GAT and GCN is
how the information from the one-hop
neighborhood is aggregated.

« For GCN, a graph convolution operation

produces the normalized sum of the node
features of neighbors.

. 1)
(I+1) _ Z 7(1) 3,)

jeN (1) 1]

RENMIN UNIVERSITY OF CHINA

Introducing attention to GCN

« GAT introduces the attention mechanism as
a substitute for the statically normalized
convolution operation.

« Below are the equations to compute the
node embedding h+"; of layer I+1 from the
embeddings of layer |.

RENMIN UNIVERSITY OF CHINA

Y OF CHINA

2 =wORY, (1)
‘” — LeakyReLU@" (="[|=")), (2)
N exp(e};)

‘.? o I (3)
ZkFN{:} exp((])

I f) (I
b = (Zaifj}), (4)

JEN(i)

RENMIN UNIVERSITY OF CHINA

class GATLayer{nn.Module):
def _init (self, g, in dim, out _dim}:

super{GATLayer, self)._ init ()
self.g = g
eguation (1)
self.fc = nn.Linear{in_dim, out_dim, bias=False)
eguation (2)
self.attn fc = nn.Linear(2 * out _dim, 1, bias=False)
self.reset parametersi()

20 = WOl (1)
e = LeakyReLU(a" («“|[z”)) (2)

1
0 exp(e;))
aij {1} {3)
E:klﬂﬂ exp(e;,)
I+1) (1
hE”=cr(Z Eﬁj’), (4)
JeN (i)

[N UNIVERSITY OF CHINA

Introducing attention to GCN

def edge_attention(self, edges):

def

def

edge UDF for equation (2)

z2 = torch.cat([edges.src['z'], edges.dst 1], dim=1)
a = self.attn fc(z2)
return {'e': F.leaky_relula)} ZZH ::Iifiﬂjlﬂ}? (1}

t 1

I T, (1 I
message_funci(self, edges): eiﬁ:::LeakyI{elﬂj(a[} {zijﬂzé})), (2)
message UDF fFor eguation (3) & (4)

& (E}}
return {"z°: edges.src["z'], 'e': edges.data['e"]} (1) Xpie 3}
Y = (0 (

reduce_func({self, nodes): E:kENtﬂ ex¥}£%k)
reduce UDF for eguation (3} & (4)
equation (3) hfﬂ} = E cr z: 4 (4)
alpha = F.softmax(nodes.mailbox['e'], dim=1) ieN()

equation (4)
h = torch.sum{alpha * nodes.mailbox['z'], dim=1)
return {"h': h}

RENMIN UNIVERSITY OF CHINA

def forward(self, h):
eguation (1)
z = self.fc(h)
self.g.ndata['z'] = z
equation (2)
self.g.apply_edges(self.edge_attention)
equation (3) & (4)
self.g.update_all(self.message func, self. I"'Eﬂl.IEE“‘FIJﬂEj
return self.g.ndata.pop('h')

20 —wORD, (1)
e) = LeakyReLU@Y (z")1=)), (2)
0 exp(e}?)
aij =) [3]
E::Em;] exp(e;,]
hEI+1'_I — Jk Z ETE;}Z;”) , [4]
JeN (i)

NMIN UNIVERSITY OF CHINA

Introducing attention to GCN

« GAT is just a different aggregation function
with attention over features of neighbors,
instead of a simple mean aggregation.

20 — Wr“]hl;”, (1)
nT
¢y = LeakyReLUG" (2"]|"), (2
o oxple)
h{I-H] 1 W{Hh'{'ﬂ Qi = (1) (3)
Mg\ ¥ —WOK) Fseno explel)
jeN(i)
-\ o),

JEN(i)

Multi-head attention

Analogous to multiple channels in ConvNet, GAT introduces
multi-head attention to enrich the model capacity and to

stabilize the learning process. Each attention head has its own
parameters and their outputs can be merged in two ways:

concatenation : h_!‘m} = ||£ilr:r(Z -:1 khj.ﬂ)

jeMN (i)

1 K
(1+1) e k vk (D)
average : h (i E -:rl.jﬁf h.j)

YT k=1 jeN(i)

VERSITY OF CHINA

class MultiHeadGATLayer(nn.Module):
def __init_ (self, g, in_dim, out_dim, num_heads, merge="cat'):
super{MultiHeadGATLayer, self).__init_ ()
self.heads = nn.ModuleList()
for i in range(num_heads):
self.heads.append(GATLayer(g, in_dim, out_dim))
self.merge = merge

def forward(self, h):
head_outs = [attn_head(h) for attn_head in self.heads]
if self.merge == "cat':
concat on the output feature dimension (dim=1)
return torch.cat(head_outs, dim=1)
else:
merge using average
return torch.mean(torch.stack(head_outs))

final

My a2t 0.8
- (‘*\\,:}. - b= e

0.4

0.2

0.0

CHINA

Line graph neural network (LGNN)

 This network focuses on community detection by
Inspecting graph structures. It uses representations
of both the original graph and its line-graph
companion. In addition to demonstrating how an
algorithm can harness multiple graphs, this
Implementation shows how you can judiciously mix
simple tensor operations and sparse-matrix tensor
operations, along with message-passing with DGL.

RENMIN UNIVERSITY OF CHINA

Supervised community detection

« In a community detection task, you cluster similar
nodes instead of labeling them. The node similarity
Is typically described as having higher inner density
within each cluster.

« What' s the difference between community
detection and node classification? Comparing to
node classification, community detection focuses on
retrieving cluster information in the graph, rather
than assigning a specific label to a node.

RENMIN UNIVERSITY OF CHINA

Community detection in a supervised setting =+’

The community detection problem could be tackled
with both supervised and unsupervised approaches.
You can formulate community detection in a
supervised setting as follows:

. Each training example consists of (G, L), where G is a directed graph (V, E). For each node v
in V', we assign a ground truth community label z, € {{]j 1}.

+ The parameterized model f(G, 6) predicts a label set Z = f(G) for nodes V.
« For each example (G, L), the model learns to minimize a specially designed loss function

(equivariant loss) L yyivariant = (Z, Z)

RENMIN UNIVERSITY OF CHINA

Community detection in a supervised setting

In this supervised setting, the model naturally predicts a label for each community. However,
community assignment should be equivariant to label permutations. To achieve this, in each
forward process, we take the minimum among losses calculated from all possible permutations
of labels.

Mathematically, this means L, pivarigne = min — log(mr,), where S, is the set of all
RESe

permutations of labels, and T is the set of predicted labels, — lﬂg[*ﬂ'., ?r} denotes negative log
likelihood.

For instance, for a sample graph with node {1, 2, 3,4} and community assignment
{A, A, A, B}, with each node’s label [€ {0, 1}.The group of all possible permutations
S. =4{0,0,0,1},{1,1,1,0}}.

Line graph neural network key ideas

An key innovation in this topic is the use of a line
graph. In models of line graph, message passing
happens not only on the original graph, e.g. the binary
community subgraph from Cora, but also on the line
graph associated with the original graph.

RENMIN UNIVERSITY OF CHINA

What is a line-graph?

Specifically, a line-graph L(G) turns an edge of the original graph
G into a node. This is illustrated with the graph below.

RENMIN UNIVERSITY OF CHINA

What is a line-graph?

The next natural question is, how to connect nodes in line-graph? How to connect two edges?
Here, we use the following connection rule:

Two nodes IJEA, 'UIB in Ig are connected if the corresponding two edges €4, € in g share one and
only one node: e 4's destination node is eg's source node ().

Mathematically, this definition corresponds to a notion called non-backtracking operator:

_f1ifj=d, £ . _ B
(=) (i) = { 0 othe : . where an edge is formed if Bmdﬂ?mdeg =

RENMIN UNIVERSITY OF CHINA

What is a line-graph?

The next natural question is, how to connect nodes in line-graph? How to connect two edges?
Here, we use the following connection rule:

Two nodes IJEA, 'UIB in Ig are connected if the corresponding two edges €4, € in g share one and
only one node: e 4's destination node is eg's source node ().

Mathematically, this definition corresponds to a notion called non-backtracking operator:

_f1ifj=d, £ . _ B
(=) (i) = { 0 othe : . where an edge is formed if Bmdﬂ?mdeg =

RENMIN UNIVERSITY OF CHINA

RENMIN UNIVERSITY OF CHINA

One layer in LGNN, algorithm structure

At the k-th layer, the i-th neuron of the [-th channel updates its embedding mEI;'i_l} with:

k41 k ke k
o =l .E ’HE 7 + (Dx®),65)
g:i' (&)
+Z;(A)iy,
=

+ [{Pm, Pd}y™],657,
+ skip-connection ieV,0=1,23,.. . bgy/2

RENMIN UNIVERSITY OF CHINA

One layer in LGNN, algorithm structure

Then, the line-graph representation y_{iﬁlj with,

L,

k+ k k k
vy =Pl 1y + (Drey™)ey

A
| : q] y k)
J ke
Z[EL{G})i 3—|—j.I’
j=0 '

T . (k+1) ()
+ {Pm,Pd} =]i T3—|-.I,If]

-+ skip-connection i € VE,E’ =1.2.3. . .b;ﬂﬂ,fE

RENMIN UNIVERSITY OF CHINA

. (B 9(

Implement LGNN in DGL

10" a linear projection of previous layer's output :.':““:'_. denote as prev{:ﬂ}.

" [D:{:{k }Eﬁk} a linear projection of degree operator on z'¥, denote as deg(z).

Z"i I[AEJ H]HL 4+ @ summation of 27 adjacency operator on ¥, denote as radius(z)

{Pm, Pd}y 'E]'] .E,_Jrj“, fusing another graph's embedding information using incidence

matrix { Pm, Pd}, followed with a linear projection, denote as fuse(y).

RENMIN UNIVERSITY OF CHINA

Implement LGNN in DGL

Each of the terms are performed again with different parameters, and without the nonlinearity after
the sum. Therefore, f could be written as:

F(@®,y®) = pprev(a®) + deg(e*) + radius(z*) + fuse(y™)]
tprev(z* V) + deg(z* V) + radius(z*) + fuse(y™)

Two equations are chained-up in the following order:

plEt1) _ _f[m{k:‘,y[k}}
y{k+1]l — f{y{k]]ﬂ:[k+l}}

RENMIN UNIVERSITY OF CHINA

Each of the terms are performed again with different parameters, and without the nonlinearity after
the sum. Therefore, f could be written as:

f(=®,y™) = plprev(z"Y) + deg(z“ ") + radius(z" ") + fuse(y™)]
4prev(z® 1) + deg(z* V) + radius(z* 1) + fuse(y™)

Two equations are chained-up in the following order:

plEt1) _ _f[m“‘j,y[k}]
y{k+1]l — _f{y{k],mikﬂ}}

RENMIN UNIVERSITY OF CHINA

Linear projection and degree operation are both simply matrix multiplication. Write them as
PyTorch tensor operations.

In _init_ , you define the projection variables.

self.linear prev = nn.Linear{in_feats, out feats)
self.linear deg = nn.lLinear{in_feats, out feats)

In forwara() , prev and deg are the same as any other PyTorch tensor operations.

prev_proj = self.linear_prev(feat_a)
deg_proj = self.linear_deg{deg * feat_a)

RENMIN UNIVERSITY OF CHINA

Implementing radius as message passing in D

self.linear_radius = nn.ModuleList(
[nn.Linear(in_feats, out_feats) for i in range{radius}])

Return o List contoining feotures gathered from multiple rodius.
import dgl.function as fn
def apgregate_radius(radius, g, z):
initiglizing List to collect message passing result
z list =]
g.ndata['z"'] = =z
pulling message fFrom 1-hop neighbourhood
g.update_all{fn.copy_src{src="z', out="m'), fn.sum{msg='m', out="z"'))
z_list.append{g.ndata['z"])
for 1 in range({radius - 1):
for j in range(2 ** i):
#pulling message from 27 neighborhood
g.update_all{fn.copy_src{src="'z"', out="m"'), fn.sum{msg="m', out="z')})
z_list.append{g.ndata['z"'])
return z_list

RENMIN UNIVERSITY OF CHINA

Implementing fuse as sparse matrix multiplicati

{Pm, Pd} is a sparse matrix with only two non-zero entries on each column. Therefore, you
construct it as a sparse matrix in the dataset, and implement fuse as a sparse matrix multiplication.

fuse = self.linear_fuse{th.mm{pm _pd, feat_b))

RENMIN UNIVERSITY OF CHINA

the complete code for f(x,y)

class LGNNCore{nn.Module):
def __init_ {self, in_feats, out_feats, radius):
super{LGNNCore, =elf}.__init_ ()
celf.out feats = out feats
celf.radius = radius

celf.linear prev = nn.Linear{in_feats, out feats)
celf.linear deg = nn.lLinear(in_feats, out feats)
celf.linear radius = nn.Modulelist(

[nn.Linear{in feats, out feats) for 1 in range(radius}])
self.linear fuse = nn.Linear{in_feats, out feats)
self.bn = nn.BatchMormld({out_feats)

RENMIN UNIVERSITY OF CHINA

def forward(self, g, feat_a, feat b, deg, pm_pd):
term "prev”
prev_proj = self.linear_previ{feat_a)
term "deg”
deg_proj = self.linear_degi{deg * feat_a)

term "rodius”

oggregate 2*i-hop features

hop2j_list = aggregate_radius(self.radius, g, feat_a)

gpply Linear transformotion

hop2j_list = [linear{x) for linear, x in zip(self.linear radius, hop2j_list)]
radius_proj = sum(hop2j_list)

term "fuse”
fuse = self.linear_fuse(th.mm{pm_pd, feat_b)})

zum them together
result = prev_proj + deg_proj + radius_proj + fuse

skip connection and batch norm

n = self.out feats /S 2

result = th.cat({[result[:, :n], F.relu{result[:; n:])], 1)
result = self.bn{result)

return result
OF CHINA

Chain-up LGNN abstractions as an LGNN layet

To implement:

(k+1)

T f(z®,y®)
y{k+]:I 25 f(y{.kj E[k+1}}

]

Chain-up two Launcere instances, as in the example code, with different parameters in the forward

pass.

class LGHMNLayer(nn.Module):
def _ init_ {self, in_feats, out_feats, radius):
super{LGNMLayer, =zelf)._ init ()
self.g layer = LGNMCore(in feats, out feats, radius)
celf.lg layer = LGNNCore(in_feats, out feats, radius)

def forward(self, g, lg, %, lg %, deg g, deg 1g, pm pd):
next_x = self.p laver{g, x, 1lg x, deg g, pm_pd)
pm_pd v = th.transpose{pm pd, @, 1)
next 1g x = self.lg layer{lg, lg x, x, deg lg, pm_pd y)
return next_x, next_lig x
CHINA

