
GNN - II

- Graph Neural Networks



Graph neural networks and its variants

• Graph convolutional network (GCN)
• Graph attention network (GAT)
• Line graph neural network (LGNN) 



Graph convolutional network (GCN)

• a scalable approach for semi-supervised 
learning on graph-structured data that is 
based on convolutional neural networks. 

• a localized first-order approximation of 
spectral graph convolutions. 

• scales linearly in the number of graph edges 
and learns hidden layer representations that 
encode both local graph structure and 
features of nodes. 



Graph convolutional network (GCN)
 In spectral graph theory, a spectral convolution on a graph is 
defined as the multiplication of a signal s ∈ RN with a filter g in
the Fourier domain, 。。。



Graph convolutional network (GCN)

We consider a multi-layer Graph Convolutional
Network (GCN) with the following layer-wise 
propagation rule (spectral propagation):
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CORA Dataset

The Cora dataset consists of 2708 
scientific publications classified into one 
of seven classes. Each publication in the 
dataset is described by a 0/1-valued 
word vector indicating the 
absence/presence of the corresponding 
word from the dictionary. The dictionary 
consists of 1433 unique words.



GCN from the perspective of message passing
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GCN from the perspective of message passing

In DGL, message passing is expressed by two APIs:

send(edges, message_func) for computing the messages along the given edges.
recv(nodes, reduce_func) for collecting the incoming messages, perform aggregation 
and so on.

Although the two-stage abstraction can cover all the models that are defined in the 
message passing paradigm, it is inefficient because it requires storing explicit messages.  
We fuse the two stages into one kernel so no explicit messages are generated and 
stored. To achieve this, we recommend using our built-in message and reduce 
functions so that DGL can analyze and map them to fused dedicated kernels. 
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Graph attention network (GAT)

• GAT extends the GCN functionality by 
deploying multi-head attention among 
neighborhood of a node. This greatly 
enhances the capacity and expressiveness of 
the model.



Introducing attention to GCN

• The key difference between GAT and GCN is 
how the information from the one-hop 
neighborhood is aggregated.

• For GCN, a graph convolution operation 
produces the normalized sum of the node 
features of neighbors.



Introducing attention to GCN

• GAT introduces the attention mechanism as 
a substitute for the statically normalized 
convolution operation. 

• Below are the equations to compute the 
node embedding h(l+1)

i of layer l+1 from the 
embeddings of layer l.
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Introducing attention to GCN

• GAT is just a different aggregation function 
with attention over features of neighbors, 
instead of a simple mean aggregation.



Multi-head attention

• Analogous to multiple channels in ConvNet, GAT introduces 
multi-head attention to enrich the model capacity and to 
stabilize the learning process. Each attention head has its own 
parameters and their outputs can be merged in two ways:
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Line graph neural network (LGNN) 

• This network focuses on community detection by 
inspecting graph structures. It uses representations 
of both the original graph and its line-graph 
companion. In addition to demonstrating how an 
algorithm can harness multiple graphs, this 
implementation shows how you can judiciously mix 
simple tensor operations and sparse-matrix tensor 
operations, along with message-passing with DGL.



Supervised community detection 

• In a community detection task, you cluster similar 
nodes instead of labeling them. The node similarity 
is typically described as having higher inner density 
within each cluster.

• What’s the difference between community 
detection and node classification？ Comparing to 
node classification, community detection focuses on 
retrieving cluster information in the graph, rather 
than assigning a specific label to a node. 



Community detection in a supervised setting

The community detection problem could be tackled 
with both supervised and unsupervised approaches. 
You can formulate community detection in a 
supervised setting as follows:
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Line graph neural network key ideas

An key innovation in this topic is the use of a line 
graph. In models of line graph, message passing 
happens not only on the original graph, e.g. the binary 
community subgraph from Cora, but also on the line 
graph associated with the original graph.



What is a line-graph?

Specifically, a line-graph L(G) turns an edge of the original graph 
G into a node. This is illustrated with the graph below.
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One layer in LGNN, algorithm structure
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Implement LGNN in DGL
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Implementing prev and deg as tensor operation
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Implementing radius as message passing in DGL



Implementing fuse as sparse matrix multiplication



 the complete code for f(x,y)
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Chain-up LGNN abstractions as an LGNN layer


