
GNN - II

- Graph Neural Networks

Graph neural networks and its variants

• Graph convolutional network (GCN)
• Graph attention network (GAT)
• Line graph neural network (LGNN)

Graph convolutional network (GCN)

• a scalable approach for semi-supervised
learning on graph-structured data that is
based on convolutional neural networks.

• a localized first-order approximation of
spectral graph convolutions.

• scales linearly in the number of graph edges
and learns hidden layer representations that
encode both local graph structure and
features of nodes.

Graph convolutional network (GCN)
 In spectral graph theory, a spectral convolution on a graph is
defined as the multiplication of a signal s ∈ RN with a filter g in
the Fourier domain, 。。。

Graph convolutional network (GCN)

We consider a multi-layer Graph Convolutional
Network (GCN) with the following layer-wise
propagation rule (spectral propagation):

Graph convolutional network (GCN)

Graph convolutional network (GCN)

CORA Dataset

The Cora dataset consists of 2708
scientific publications classified into one
of seven classes. Each publication in the
dataset is described by a 0/1-valued
word vector indicating the
absence/presence of the corresponding
word from the dictionary. The dictionary
consists of 1433 unique words.

GCN from the perspective of message passing

GCN from the perspective of message passing

GCN from the perspective of message passing

GCN from the perspective of message passing

In DGL, message passing is expressed by two APIs:

send(edges, message_func) for computing the messages along the given edges.
recv(nodes, reduce_func) for collecting the incoming messages, perform aggregation
and so on.

Although the two-stage abstraction can cover all the models that are defined in the
message passing paradigm, it is inefficient because it requires storing explicit messages.
We fuse the two stages into one kernel so no explicit messages are generated and
stored. To achieve this, we recommend using our built-in message and reduce
functions so that DGL can analyze and map them to fused dedicated kernels.

GCN from the perspective of message passing

In DGL, message passing is expressed by two APIs:

send(edges, message_func) for computing the messages along the given edges.
recv(nodes, reduce_func) for collecting the incoming messages, perform aggregation
and so on.

Although the two-stage abstraction can cover all the models that are defined in the
message passing paradigm, it is inefficient because it requires storing explicit messages.
We fuse the two stages into one kernel so no explicit messages are generated and
stored. To achieve this, we recommend using our built-in message and reduce
functions so that DGL can analyze and map them to fused dedicated kernels.

Graph attention network (GAT)

• GAT extends the GCN functionality by
deploying multi-head attention among
neighborhood of a node. This greatly
enhances the capacity and expressiveness of
the model.

Introducing attention to GCN

• The key difference between GAT and GCN is
how the information from the one-hop
neighborhood is aggregated.

• For GCN, a graph convolution operation
produces the normalized sum of the node
features of neighbors.

Introducing attention to GCN

• GAT introduces the attention mechanism as
a substitute for the statically normalized
convolution operation.

• Below are the equations to compute the
node embedding h(l+1)

i of layer l+1 from the
embeddings of layer l.

Introducing attention to GCN

Introducing attention to GCN

Introducing attention to GCN

Introducing attention to GCN

Introducing attention to GCN

Introducing attention to GCN

• GAT is just a different aggregation function
with attention over features of neighbors,
instead of a simple mean aggregation.

Multi-head attention

• Analogous to multiple channels in ConvNet, GAT introduces
multi-head attention to enrich the model capacity and to
stabilize the learning process. Each attention head has its own
parameters and their outputs can be merged in two ways:

Multi-head attention

• Analogous to multiple channels in ConvNet, GAT introduces
multi-head attention to enrich the model capacity and to
stabilize the learning process. Each attention head has its own
parameters and their outputs can be merged in two ways:

Multi-head attention

• Analogous to multiple channels in ConvNet, GAT introduces
multi-head attention to enrich the model capacity and to
stabilize the learning process. Each attention head has its own
parameters and their outputs can be merged in two ways:

Line graph neural network (LGNN)

• This network focuses on community detection by
inspecting graph structures. It uses representations
of both the original graph and its line-graph
companion. In addition to demonstrating how an
algorithm can harness multiple graphs, this
implementation shows how you can judiciously mix
simple tensor operations and sparse-matrix tensor
operations, along with message-passing with DGL.

Supervised community detection

• In a community detection task, you cluster similar
nodes instead of labeling them. The node similarity
is typically described as having higher inner density
within each cluster.

• What’s the difference between community
detection and node classification？ Comparing to
node classification, community detection focuses on
retrieving cluster information in the graph, rather
than assigning a specific label to a node.

Community detection in a supervised setting

The community detection problem could be tackled
with both supervised and unsupervised approaches.
You can formulate community detection in a
supervised setting as follows:

Community detection in a supervised setting

The community detection problem could be tackled
with both supervised and unsupervised approaches.
You can formulate community detection in a
supervised setting as follows:

Line graph neural network key ideas

An key innovation in this topic is the use of a line
graph. In models of line graph, message passing
happens not only on the original graph, e.g. the binary
community subgraph from Cora, but also on the line
graph associated with the original graph.

What is a line-graph?

Specifically, a line-graph L(G) turns an edge of the original graph
G into a node. This is illustrated with the graph below.

What is a line-graph?

Specifically, a line-graph L(G) turns an edge of the original graph
G into a node. This is illustrated with the graph below.

What is a line-graph?

Specifically, a line-graph L(G) turns an edge of the original graph
G into a node. This is illustrated with the graph below.

One layer in LGNN, algorithm structure

Specifically, a line-graph L(G) turns an edge of the original graph
G into a node. This is illustrated with the graph below.

One layer in LGNN, algorithm structure

One layer in LGNN, algorithm structure

Implement LGNN in DGL

Implement LGNN in DGL

Implementing prev and deg as tensor operation

Implementing prev and deg as tensor operation

Implementing radius as message passing in DGL

Implementing fuse as sparse matrix multiplication

 the complete code for f(x,y)

 the complete code for f(x,y)

Chain-up LGNN abstractions as an LGNN layer

