
GNN - III

- Heterogeneous Graphs & RGCN

• Heterogeneous Graphs
• Relational Graph Convolutional Networks
• Entity classification
• Link prediction

Heterogeneous Graphs

• Heterogeneous graphs are graphs that
contain different types of nodes and edges
which have different types of attributes that
are designed to capture the characteristics of
each node and edge type.

• Within the context of graph neural networks,
certain node and edge types might need to
be modeled with different number of
dimensions.

Examples of heterographs
• Citation graph: The Association for Computing Machinery

publishes an ACM dataset that contains two million papers,
their authors, publication venues, and the other papers that
were cited.

Examples of heterographs
• It has three types of entities that correspond to papers,

authors, and publication venues.
• It contains three types of edges :

• Authors with papers corresponding to written-by relationships
• Papers with venues corresponding to published-in relationships
• Papers with other papers corresponding to cited-by relationships

Examples of heterographs
• Recommender systems: The datasets used in recommender

systems often contain interactions between users and items.
For example, the data could include the ratings that users have
provided to movies.

Examples of heterographs
• The nodes in these heterographs will have two types, users and

movies.
• The edges will correspond to the user-movie interactions.

Furthermore, if an interaction is marked with a rating, then
each rating value could correspond to a different edge type.

Examples of heterographs
• Knowledge graph: Knowledge graphs are inherently

heterogenous. For example, in Wikidata, Barack Obama (item
Q76) is an instance of a human, which could be viewed as the
entity class, whose spouse (item P26) is Michelle Obama (item
Q13133) and occupation (item P106) is politician (item
Q82955).

Examples of heterographs

Examples of heterographs

Manipulating heterograph

• See the code...

Learning tasks with heterographs

• Node classification/regression to predict the class of each
node or estimate a value associated with it.

• Link prediction to predict if there is an edge of a certain type
between a pair of nodes, or predict which other nodes a
particular node is connected with (and optionally the edge
types of such connections).

• Graph classification/regression to assign an entire
heterograph into one of the target classes or to estimate a
numerical value associated with it.

semi-supervised node classification

• Our goal is to predict the publishing conference of a
paper using the ACM academic graph we just
created. To further simplify the task, we only focus
on papers published in three conferences: KDD,
ICML, and VLDB. All the other papers are not labeled,
making it a semi-supervised setting.

Relational-GCN on heterograph

• Our goal is to predict the publishing conference of a
paper using the ACM academic graph we just
created. To further simplify the task, we only focus
on papers published in three conferences: KDD,
ICML, and VLDB. All the other papers are not labeled,
making it a semi-supervised setting.

Relational-GCN on heterograph

• See the code...

R-GCN

• The relational graph convolutional network
(R-GCN) is one effort to generalize GCN to
handle different relationships between
entities in a knowledge base.

R-GCN

• A knowledge graph is made up of a
collection of triples in the form subject,
relation, object. Edges thus encode
important information and have their own
embeddings to be learned. Furthermore,
there may exist multiple edges among any
given pair.

A brief introduction to R-GCN

In statistical relational learning (SRL), there are two
fundamental tasks:
• Entity classification - Where you assign types and

categorical properties to entities.
• Link prediction - Where you recover missing triples.
In both cases, missing information is expected to be
recovered from the neighborhood structure of the
graph.

A brief introduction to R-GCN

R-GCN solves these two problems using a common graph
convolutional network. It's extended with multi-edge encoding to
compute embedding of the entities, but with different
downstream processing.
• Entity classification is done by attaching a softmax classifier at

the final embedding of an entity (node). Training is through
loss of standard cross-entropy.

• Link prediction is done by reconstructing an edge with an
autoencoder architecture, using a parameterized score function.
Training uses negative sampling.

Key ideas of R-GCN

R-GCN solves these two problems using a common graph
convolutional network. It’s extended with multi-edge encoding
to compute embedding of the entities, but with different
downstream processing.
• Entity classification is done by attaching a softmax classifier at

the final embedding of an entity (node). Training is through
loss of standard cross-entropy.

• Link prediction is done by reconstructing an edge with an
autoencoder architecture, using a parameterized score function.
Training uses negative sampling.

Key ideas of R-GCN

Key ideas of R-GCN

Key ideas of R-GCN

Key ideas of R-GCN

Another method regularizing the weights of R-GCN-layers: the
block-diagonal decomposition, we let each W(l)

 r be defined
through the direct sum over a set of low-dimensional matrices:

Implement R-GCN in DGL

An R-GCN model is composed of several R-GCN layers. The first
R-GCN layer also serves as input layer and takes in features (for
example, description texts) that are associated with node entity
and project to hidden space. In this tutorial, we only use the entity
ID as an entity feature.

R-GCN layers

For each node, an R-GCN layer performs the following steps:

• Compute outgoing message using node representation and
weight matrix associated with the edge type (message function)

• Aggregate incoming messages and generate new node
representations (reduce and apply function)

AIFB Dataset

The Cora dataset consists of 2708
scientific publications classified into one
of seven classes. Each publication in the
dataset is described by a 0/1-valued
word vector indicating the
absence/presence of the corresponding
word from the dictionary. The dictionary
consists of 1433 unique words.

entity classification

• The entity classification model uses softmax
classifiers at each node in the graph. The classifiers
take node representations supplied by a relational
graph convolutional network (R-GCN) and predict
the labels. The model, including R-GCN parameters,
is learned by optimizing the cross-entropy loss.

entity classification

• See the code.

link prediction

• In the knowledge base setting, representation generated by
R-GCN can be used to uncover potential relationships
between nodes. In the R-GCN paper, the authors feed the
entity representations generated by R-GCN into the
DistMult prediction model to predict possible relationships.

• The implementation is similar to that presented here, but
with an extra DistMult layer stacked on top of the R-GCN
layers.

link prediction

• The link prediction model can be regarded as an
autoencoder consisting of (1) an encoder: an R-
GCN producing latent feature representations of
entities, and (2) a decoder: a tensor factorization
model exploiting these representations to predict
labeled edges.

