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- Heterogeneous Graphs & RGCN



• Heterogeneous Graphs
• Relational Graph Convolutional Networks
• Entity classification
• Link prediction



Heterogeneous Graphs

• Heterogeneous graphs are graphs that 
contain different types of nodes and edges 
which have different types of attributes that 
are designed to capture the characteristics of 
each node and edge type. 

• Within the context of graph neural networks, 
certain node and edge types might need to 
be modeled with different number of 
dimensions.



Examples of heterographs
• Citation graph: The Association for Computing Machinery 

publishes an ACM dataset that contains two million papers, 
their authors, publication venues, and the other papers that 
were cited. 



Examples of heterographs
• It has three types of entities that correspond to papers, 

authors, and publication venues. 
• It contains three types of edges :

• Authors with papers corresponding to written-by relationships
• Papers with venues corresponding to published-in relationships
• Papers with other papers corresponding to cited-by relationships



Examples of heterographs
• Recommender systems: The datasets used in recommender 

systems often contain interactions between users and items. 
For example, the data could include the ratings that users have 
provided to movies. 



Examples of heterographs
• The nodes in these heterographs will have two types, users and 

movies. 
• The edges will correspond to the user-movie interactions. 

Furthermore, if an interaction is marked with a rating, then 
each rating value could correspond to a different edge type. 



Examples of heterographs
• Knowledge graph: Knowledge graphs are inherently 

heterogenous. For example, in Wikidata, Barack Obama (item 
Q76) is an instance of a human, which could be viewed as the 
entity class, whose spouse (item P26) is Michelle Obama (item 
Q13133) and occupation (item P106) is politician (item 
Q82955). 



Examples of heterographs



Examples of heterographs



Manipulating heterograph

• See the code...



Learning tasks with heterographs

• Node classification/regression to predict the class of each 
node or estimate a value associated with it.

• Link prediction to predict if there is an edge of a certain type 
between a pair of nodes, or predict which other nodes a 
particular node is connected with (and optionally the edge 
types of such connections).

• Graph classification/regression to assign an entire 
heterograph into one of the target classes or to estimate a 
numerical value associated with it.



semi-supervised node classification

• Our goal is to predict the publishing conference of a 
paper using the ACM academic graph we just 
created. To further simplify the task, we only focus 
on papers published in three conferences: KDD, 
ICML, and VLDB. All the other papers are not labeled, 
making it a semi-supervised setting.



Relational-GCN on heterograph

• Our goal is to predict the publishing conference of a 
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on papers published in three conferences: KDD, 
ICML, and VLDB. All the other papers are not labeled, 
making it a semi-supervised setting.



Relational-GCN on heterograph

• See the code...



R-GCN

• The relational graph convolutional network 
(R-GCN) is one effort to generalize GCN to 
handle different relationships between 
entities in a knowledge base. 



R-GCN

• A knowledge graph is made up of a 
collection of triples in the form subject, 
relation, object. Edges thus encode 
important information and have their own 
embeddings to be learned. Furthermore, 
there may exist multiple edges among any 
given pair.



A brief introduction to R-GCN

In statistical relational learning (SRL), there are two 
fundamental tasks:
• Entity classification - Where you assign types and 

categorical properties to entities.
• Link prediction - Where you recover missing triples.
In both cases, missing information is expected to be 
recovered from the neighborhood structure of the 
graph.



A brief introduction to R-GCN

R-GCN solves these two problems using a common graph 
convolutional network. It's extended with multi-edge encoding to 
compute embedding of the entities, but with different 
downstream processing.
• Entity classification is done by attaching a softmax classifier at 

the final embedding of an entity (node). Training is through 
loss of standard cross-entropy.

• Link prediction is done by reconstructing an edge with an 
autoencoder architecture, using a parameterized score function. 
Training uses negative sampling.
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Key ideas of R-GCN

Another  method regularizing the weights of R-GCN-layers: the 
block-diagonal decomposition, we let each W(l)

 r be defined 
through the direct sum over a set of low-dimensional matrices:



Implement R-GCN in DGL

An R-GCN model is composed of several R-GCN layers. The first 
R-GCN layer also serves as input layer and takes in features (for 
example, description texts) that are associated with node entity 
and project to hidden space. In this tutorial, we only use the entity 
ID as an entity feature.



R-GCN layers

For each node, an R-GCN layer performs the following steps:

• Compute outgoing message using node representation and 
weight matrix associated with the edge type (message function)

• Aggregate incoming messages and generate new node 
representations (reduce and apply function)



AIFB Dataset

The Cora dataset consists of 2708 
scientific publications classified into one 
of seven classes. Each publication in the 
dataset is described by a 0/1-valued 
word vector indicating the 
absence/presence of the corresponding 
word from the dictionary. The dictionary 
consists of 1433 unique words.



entity classification

• The entity classification model uses softmax 
classifiers at each node in the graph. The classifiers 
take node representations supplied by a relational 
graph convolutional network (R-GCN) and predict 
the labels. The model, including R-GCN parameters, 
is learned by optimizing the cross-entropy loss.



entity classification

• See the code.



link prediction

• In the knowledge base setting, representation generated by 
R-GCN can be used to uncover potential relationships 
between nodes. In the R-GCN paper, the authors feed the 
entity representations generated by R-GCN into the 
DistMult prediction model to predict possible relationships.

• The implementation is similar to that presented here, but 
with an extra DistMult layer stacked on top of the R-GCN 
layers.



link prediction

• The link prediction model can be regarded as an 
autoencoder consisting of (1) an encoder: an R-
GCN producing latent feature representations of 
entities, and (2) a decoder: a tensor factorization 
model exploiting these representations to predict 
labeled edges. 


