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• Generate Image from Segmentation Map Using Deep Learning
• Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data

GAN for Semantic Segmentation示例



This example shows how to generate a synthetic image of a scene from a 
semantic segmentation map using a pix2pixHD conditional generative 
adversarial network (CGAN).
Pix2pixHD consists of two networks that are trained simultaneously to maximize 
the performance of both.
• The generator is an encoder-decoder style neural network that generates a 

scene image from a semantic segmentation map. A CGAN network trains the 
generator to generate a scene image that the discriminator misclassifies as 
real.

• The discriminator is a fully convolutional neural network that compares a 
generated scene image and the corresponding real image and attempts to 
classify them as fake and real, respectively. A CGAN network trains the 
discriminator to correctly distinguish between generated and real image.

Generate Image from Segmentation Map Using Deep Learning



This example uses the CamVid data set from the University of Cambridge for 
training. This data set is a collection of 701 images containing street-level views 
obtained while driving. The data set provides pixel labels for 32 semantic classes 
including car, pedestrian, and road.

imageURL = 
'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/files/701_Still
sRaw_full.zip';
labelURL = 
'http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/LabeledApp
roved_full.zip';

dataDir = fullfile(pwd); 
downloadCamVidData(dataDir,imageURL,labelURL);
imgDir = fullfile(dataDir,"images","701_StillsRaw_full");
labelDir = fullfile(dataDir,'labels');

Download CamVid Data Set



Create an ImageDatastore to store the images in the CamVid data set.
imds = imageDatastore(imgDir);
imageSize = [576 768];

Define the class names and pixel label IDs of the 32 classes in the CamVid data 
set using the helper function defineCamVid32ClassesAndPixelLabelIDs. Get a 
standard colormap for the CamVid data set using the helper function 
camvid32ColorMap. 
numClasses = 32;
[classes,labelIDs] = defineCamVid32ClassesAndPixelLabelIDs;
cmap = camvid32ColorMap;

Preprocess Training Data



Create a PixelLabelDatastore to store the pixel label images.
pxds = pixelLabelDatastore(labelDir,classes,labelIDs);
Preview a pixel label image and the corresponding ground truth scene image. 
Convert the labels from categorical labels to RGB colors by using the label2rgb 
function, then display the pixel label image and ground truth image in a montage.
im = preview(imds);
px = preview(pxds);
px = label2rgb(px,cmap);
montage({px,im})
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Preprocess Training Data



Partition the data into training and test sets using the helper function 
partitionCamVidForPix2PixHD. This function is attached to the example as a 
supporting file. The helper function splits the data into 648 training files and 53 
test files.
[imdsTrain,imdsTest,pxdsTrain,pxdsTest] = 
partitionCamVidForPix2PixHD(imds,pxds,classes,labelIDs);

Use the combine function to combine the pixel label images and ground truth 
scene images into a single datastore.
dsTrain = combine(pxdsTrain,imdsTrain);

Preprocess Training Data



Augment the training data by using the transform function with custom 
preprocessing operations specified by the helper function 
preprocessCamVidForPix2PixHD. 
The preprocessCamVidForPix2PixHD function performs these operations:
1. Scale the ground truth data to the range [-1, 1]. This range matches the range 

of the final tanhLayer in the generator network.
2. Resize the image and labels to the output size of the network, 576-by-768 

pixels, using bicubic and nearest neighbor downsampling, respectively.
3. Convert the single channel segmentation map to a 32-channel one-hot 

encoded segmentation map using the onehotencode function.
4. Randomly flip image and pixel label pairs in the horizontal direction.

dsTrain = transform(dsTrain,@(x) preprocessCamVidForPix2PixHD(x,imageSize));

Preprocess Training Data



Preview the channels of a one-hot encoded segmentation map in a montage. Each 
channel represents a one-hot map corresponding to pixels of a unique class.
map = preview(dsTrain);
montage(map{1},'Size',[4 8],'Bordersize',5,'BackgroundColor','b')
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Preprocess Training Data



Define a pix2pixHD generator network that generates a scene image from a depth-
wise one-hot encoded segmentation map. This input has same height and width as 
the original segmentation map and the same number of channels as classes.
generatorInputSize = [imageSize numClasses];

Create the pix2pixHD generator network using the pix2pixHDGlobalGenerator 
function.
dlnetGenerator = pix2pixHDGlobalGenerator(generatorInputSize);
Display the network architecture.
analyzeNetwork(dlnetGenerator)

Create Generator Network



Create Generator Network



Define the patch GAN discriminator networks that classifies an input image as 
either real (1) or fake (0). This example uses two discriminator networks at 
different input scales, also known as multiscale discriminators. The first scale is the 
same size as the image size, and the second scale is half the size of image size.
The input to the discriminator is the depth-wise concatenation of the one-hot 
encoded segmentation maps and the scene image to be classified. Specify the 
number of channels input to the discriminator as the total number of labeled 
classes and image color channels.

numImageChannels = 3;
numChannelsDiscriminator = numClasses + numImageChannels;

Create Discriminator Network



Specify the input size of the first discriminator. Create the patch GAN discriminator 
with instance normalization using the patchGANDiscriminator function.
discriminatorInputSizeScale1 = [imageSize numChannelsDiscriminator];
dlnetDiscriminatorScale1 = 
patchGANDiscriminator(discriminatorInputSizeScale1,"NormalizationLayer","instance");

Specify the input size of the second discriminator as half the image size, then 
create the second patch GAN discriminator.
discriminatorInputSizeScale2 = [floor(imageSize)./2 numChannelsDiscriminator];
dlnetDiscriminatorScale2 = 
patchGANDiscriminator(discriminatorInputSizeScale2,"NormalizationLayer","instance");

Create Discriminator Network



Visualize the networks.
analyzeNetwork(dlnetDiscriminatorScale1);
analyzeNetwork(dlnetDiscriminatorScale2);

Create Discriminator Network



Specify the input size of the first discriminator. Create the patch GAN discriminator 
with instance normalization using the patchGANDiscriminator function.
discriminatorInputSizeScale1 = [imageSize numChannelsDiscriminator];
dlnetDiscriminatorScale1 = 
patchGANDiscriminator(discriminatorInputSizeScale1,"NormalizationLayer","instance");

Specify the input size of the second discriminator as half the image size, then 
create the second patch GAN discriminator.
discriminatorInputSizeScale2 = [floor(imageSize)./2 numChannelsDiscriminator];
dlnetDiscriminatorScale2 = 
patchGANDiscriminator(discriminatorInputSizeScale2,"NormalizationLayer","instance");

Create Discriminator Network



Specify the input size of the first discriminator. Create the patch GAN discriminator 
with instance normalization using the patchGANDiscriminator function.
discriminatorInputSizeScale1 = [imageSize numChannelsDiscriminator];
dlnetDiscriminatorScale1 = 
patchGANDiscriminator(discriminatorInputSizeScale1,"NormalizationLayer","instance");

Specify the input size of the second discriminator as half the image size, then 
create the second patch GAN discriminator.
discriminatorInputSizeScale2 = [floor(imageSize)./2 numChannelsDiscriminator];
dlnetDiscriminatorScale2 = 
patchGANDiscriminator(discriminatorInputSizeScale2,"NormalizationLayer","instance");

Create Discriminator Network



The helper function modelGradients calculates the gradients and adversarial loss 
for the generator and discriminator. The function also calculates the feature 
matching loss and VGG loss for the generator. 

Define Model Gradients and Loss Functions



The objective of the generator is to generate images that the discriminator 
classifies as real (1). The generator loss consists of three losses.

Generator Loss
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Generator Loss



The objective of the discriminator is to correctly distinguish between ground truth 
images and generated images. The discriminator loss is a sum of two components:
• The squared difference between a vector of ones and the predictions of the 

discriminator on real images
• The squared difference between a vector of zeros and the predictions of the 

discriminator on generated images

The discriminator loss is implemented using part of the pix2pixhdAdversarialLoss 
helper function defined in the Supporting Functions section of this example. Note 
that adversarial loss for the discriminator is computed for two different 
discriminator scales.

Discriminator Loss



This example modifies a pretrained VGG-19 deep neural network to extract the 
features of the real and generated images at various layers. These multilayer 
features are used to compute the perceptual loss of the generator.

netVGG = vgg19;

Load Feature Extraction Network



To make the VGG-19 network suitable for feature extraction, keep the layers up to 
'pool5' and remove all of the fully connected layers from the network. The 
resulting network is a fully convolutional network.
netVGG = layerGraph(netVGG.Layers(1:38));

Create a new image input layer with no normalization. Replace the original image 
input layer with the new layer.
inp = imageInputLayer([imageSize 3],"Normalization","None","Name","Input");
netVGG = replaceLayer(netVGG,"input",inp);
netVGG = dlnetwork(netVGG);

Load Feature Extraction Network



Specify the options for Adam optimization. Train for 60 epochs. Specify identical 
options for the generator and discriminator networks.
• Specify an equal learning rate of 0.0002.
• Initialize the trailing average gradient and trailing average gradient-square 

decay rates with [].
• Use a gradient decay factor of 0.5 and a squared gradient decay factor of 0.999.
• Use a mini-batch size of 1 for training.

Specify Training Options



numEpochs = 60;
learningRate = 0.0002;
trailingAvgGenerator = [];
trailingAvgSqGenerator = [];
trailingAvgDiscriminatorScale1 = [];
trailingAvgSqDiscriminatorScale1 = [];
trailingAvgDiscriminatorScale2 = [];
trailingAvgSqDiscriminatorScale2 = [];
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;
miniBatchSize = 1;

Specify Training Options



Create a minibatchqueue object that manages the mini-batching of observations in 
a custom training loop. The minibatchqueue object also casts data to a dlarray 
object that enables auto differentiation in deep learning applications.
Specify the mini-batch data extraction format as SSCB (spatial, spatial, channel, 
batch). Set the DispatchInBackground name-value pair argument as the boolean 
returned by canUseGPU. If a supported GPU is available for computation, then the 
minibatchqueue object preprocesses mini-batches in the background in a parallel 
pool during training.
mbqTrain = minibatchqueue(dsTrain,"MiniBatchSize",miniBatchSize, ...
   "MiniBatchFormat","SSCB","DispatchInBackground",canUseGPU);

Specify Training Options



By default, the example downloads a pretrained version of the pix2pixHD 
generator network for the CamVid data set by using the helper function 
downloadTrainedPix2PixHDNet. The helper function is attached to the example as 
a supporting file. The pretrained network enables you to run the entire example 
without waiting for training to complete.
To train the network, set the doTraining variable in the following code to true. Train 
the model in a custom training loop. For each iteration:
• Read the data for current mini-batch using the next function.
• Evaluate the model gradients using the dlfeval function and the modelGradients 

helper function.
• Update the network parameters using the adamupdate function. 
• Update the training progress plot for every iteration and display various 

computed losses.

Train the Network



Training takes about 22 hours on an NVIDIA™ Titan RTX and can take even longer depending 
on your GPU hardware. If your GPU device has less memory, try reducing the size of the 
input images by specifying the imageSize variable as [480 640] in the Preprocess Training 
Data section of the example.

Train the Network



doTraining = false;
if doTraining
    fig = figure;        
    lossPlotter = configureTrainingProgressPlotter(fig);
    iteration = 0;
    for epoch = 1:numEpochs   % Loop over epochs     
        reset(mbqTrain);      % Reset and shuffle the data
        shuffle(mbqTrain); 
        while hasdata(mbqTrain)        % Loop over each image
            iteration = iteration + 1;            
            % Read data from current mini-batch
            [dlInputSegMap,dlRealImage] = next(mbqTrain);            
            % Evaluate the model gradients and the generator state               
            [gradParamsG,gradParamsDScale1,gradParamsDScale2,...
               lossGGAN,lossGFM,lossGVGG,lossD] = dlfeval(   ...          
               @modelGradients,dlInputSegMap,dlRealImage,dlnetGenerator,...
               dlnetDiscriminatorScale1,dlnetDiscriminatorScale2,netVGG);
   



% Update the generator parameters
[dlnetGenerator,trailingAvgGenerator,trailingAvgSqGenerator] = adamupdate( ...
  dlnetGenerator,gradParamsG, trailingAvgGenerator,trailingAvgSqGenerator,iteration, ...
  learningRate,gradientDecayFactor,squaredGradientDecayFactor);
            
% Update the discriminator scale1 parameters            
[dlnetDiscriminatorScale1,trailingAvgDiscriminatorScale1,trailingAvgSqDiscriminatorScal
e1] = adamupdate( dlnetDiscriminatorScale1,gradParamsDScale1, ...                
trailingAvgDiscriminatorScale1,trailingAvgSqDiscriminatorScale1,iteration, ...
                learningRate,gradientDecayFactor,squaredGradientDecayFactor); 
           
% Update the discriminator scale2 parameters            
[dlnetDiscriminatorScale2,trailingAvgDiscriminatorScale2,trailingAvgSqDiscriminatorScal
e2] = adamupdate( dlnetDiscriminatorScale2,gradParamsDScale2, ...                
trailingAvgDiscriminatorScale2,trailingAvgSqDiscriminatorScale2,iteration, ...
                learningRate,gradientDecayFactor,squaredGradientDecayFactor);
            
% Plot and display various losses
lossPlotter = updateTrainingProgressPlotter(lossPlotter,iteration, ...
                epoch,numEpochs,lossD,lossGGAN,lossGFM,lossGVGG);
        end
    end



The performance of this trained Pix2PixHD network is limited because the number of 
CamVid training images is relatively small. Additionally, some images belong to an image 
sequence and therefore are correlated with other images in the training set. To improve the 
effectiveness of the Pix2PixHD network, train the network using a different data set that has 
a larger number of training images without correlation.

Evaluate Generated Images from Test Data



Because of the limitations, this Pix2PixHD network generates more realistic images for some 
test images than for others. To demonstrate the difference in results, compare the 
generated images for the first and third test image. The camera angle of the first test image 
has an uncommon vantage point that faces more perpendicular to the road than the typical 
training image. In contrast, the camera angle of the third test image has a typical vantage 
point that faces along the road and shows two lanes with lane markers. The network has 
significantly better performance generating a realistic image for the third test image than for 
the first test image.

Evaluate Generated Images from Test Data



Get the first ground truth scene image from the test data. Resize the image using bicubic 
interpolation.
idxToTest = 1;
gtImage = readimage(imdsTest,idxToTest);
gtImage = imresize(gtImage,imageSize,"bicubic");

Get the corresponding pixel label image from the test data. Resize the pixel label image 
using nearest neighbor interpolation.
segMap = readimage(pxdsTest,idxToTest);
segMap = imresize(segMap,imageSize,"nearest");

Evaluate Generated Images from Test Data



Convert the pixel label image to a multichannel one-hot segmentation map by using the 
onehotencode function.
segMapOneHot = onehotencode(segMap,3,'single');

Create dlarray objects that inputs data to the generator. If a supported GPU is available for 
computation, then perform inference on a GPU by converting the data to a gpuArray object. 
dlSegMap = dlarray(segMapOneHot,'SSCB'); 
if canUseGPU
    dlSegMap = gpuArray(dlSegMap);
end

Evaluate Generated Images from Test Data



Generate a scene image from the generator and one-hot segmentation map using the 
predict function.
dlGeneratedImage = predict(dlnetGenerator,dlSegMap);
generatedImage = extractdata(gather(dlGeneratedImage));

The final layer of the generator network produces activations in the range [-1, 1]. For display, 
rescale the activations to the range [0, 1].
generatedImage = rescale(generatedImage);

For display, convert the labels from categorical labels to RGB colors by using the label2rgb 
function.
coloredSegMap = label2rgb(segMap,cmap);

Evaluate Generated Images from Test Data



Display the RGB pixel label image, generated scene image, and ground truth scene image in 
a montage.
figure
montage({coloredSegMap generatedImage gtImage},'Size',[1 3])
title(['Test Pixel Label Image ',num2str(idxToTest),' with Generated and 
Ground Truth Scene Images'])

Evaluate Generated Images from Test Data



Get the third ground truth scene image from the test data. Resize the image using bicubic 
interpolation.
idxToTest = 3;  
gtImage = readimage(imdsTest,idxToTest);
gtImage = imresize(gtImage,imageSize,"bicubic");

To get the third pixel label image from the test data and to generate the corresponding 
scene image, you can use the helper function evaluatePix2PixHD.

Evaluate Generated Images from Test Data



The evaluatePix2PixHD function performs the same operations as the evaluation of the first 
test image:
• Get a pixel label image from the test data. Resize the pixel label image using nearest 

neighbor interpolation.
• Convert the pixel label image to a multichannel one-hot segmentation map using the 

onehotencode function.
• Create a dlarray object to input data to the generator. For GPU inference, convert the 

data to a gpuArray object.
• Generate a scene image from the generator and one-hot segmentation map using the 

predict function.
• Rescale the activations to the range [0, 1].

Evaluate Generated Images from Test Data



[generatedImage,segMap] = 
evaluatePix2PixHD(pxdsTest,idxToTest,imageSize,dlnetGenerator);

For display, convert the labels from categorical labels to RGB colors by using the label2rgb 
function.
coloredSegMap = label2rgb(segMap,cmap);

Evaluate Generated Images from Test Data



Display the RGB pixel label image, generated scene image, and ground truth scene image in 
a montage.
figure
montage({coloredSegMap generatedImage gtImage},'Size',[1 3])
title(['Test Pixel Label Image ',num2str(idxToTest),' with Generated and 
Ground Truth Scene Images'])

Evaluate Generated Images from Test Data



For each pixel label image in the datastore, generate a scene image using the helper 
function evaluatePix2PixHD.
for idx = 1:length(cpxds.Files)
    % Get the pixel label image and generated scene image
    [generatedImage,segMap] = 
evaluatePix2PixHD(cpxds,idx,imageSize,dlnetGenerator);
    
    % For display, convert the labels from categorical labels to RGB colors
    coloredSegMap = label2rgb(segMap);
    
    % Display the pixel label image and generated scene image in a montage
    figure
    montage({coloredSegMap generatedImage})
    title(['Custom Pixel Label Image ',num2str(idx),' and Generated Scene 
Image'])
end

Evaluate Generated Images from Custom Pixel Label Images





The modelGradients helper function calculates the gradients and adversarial loss for the 
generator and discriminator. The function also calculates the feature matching loss and VGG 
loss for the generator.

Model Gradients Function
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The helper function pix2pixHDAdverserialLoss computes the adversarial loss gradients for 
the generator and the discriminator. The function also returns feature maps of the real 
image and synthetic images.

Adversarial Loss Function



The helper function pix2pixHDFeatureMatchingLoss computes the feature matching loss 
between a real image and a synthetic image generated by the generator.
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Feature Matching Loss Function



The helper function pix2pixHDVGGLoss computes the perceptual VGG loss between a real 
image and a synthetic image generated by the generator.

Perceptual VGG Loss Function



Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data



This example shows how to use 3-D simulation data to train a semantic segmentation 
network and fine-tune it to real-world data using generative adversarial networks (GANs).
This example uses 3-D simulation data generated by Driving Scenario Designer and the 
Unreal Engine®. 
The 3-D simulation environment generates the images and the corresponding ground truth 
pixel labels. Using the simulation data avoids the annotation process, which is both tedious 
and requires a large amount of human effort. However, domain shift models trained on only 
simulation data do not perform well on real-world data sets. To address this, you can use 
domain adaptation to fine-tune the trained model to work on a real-world data set. 

Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data



This example uses AdaptSegNet, a network that adapts the structure of the output 
segmentation predictions, which look alike irrespective of the input domain. The 
AdaptSegNet network is based on the GAN model and consists of two networks that are 
trained simultaneously to maximize the performance of both:
• Generator — Network trained to generate high-quality segmentation results from real or 

simulated input images
• Discriminator — Network that compares and attempts to distinguish whether the 

segmentation predictions of the generator are from real or simulated data
To fine-tune the AdaptSegNet model for real-world data, this example uses a subset of the 
CamVid data and adapts the model to generate high-quality segmentation predictions on 
the CamVid data.

Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data



Download the pretrained network. The pretrained model allows you to run the entire 
example without having to wait for training to complete. If you want to train the network, 
set the doTraining variable to true.

Download Pretrained Network



Download the simulation and real data sets by using the downloadDataset function, defined 
in the Supporting Functions section of this example. The downloadDataset function 
downloads the entire CamVid data set and partition the data into training and test sets.
The simulation data set was generated by Driving Scenario Designer. The generated 
scenarios, which consist of 553 photorealistic images with labels, were rendered by the 
Unreal Engine. You use this data set to train the model. 
The real data set is a subset of the CamVid data set from the University of Cambridge. To 
adapt the model to real-world data, 69 CamVid images. To evaluate the trained model, you 
use 368 CamVid images.
The downloaded files include the pixel labels for the real domain, but note that you do not 
use these pixel labels in the training process. This example uses the real domain pixel labels 
only to calculate the mean intersection over union (IoU) value to evaluate the efficacy of the 
trained model.

Download Data Sets



Download Data Sets



Use imageDatastore to load the simulation and real data sets for training. By using an image 
datastore, you can efficiently load a large collection of images on disk.
simData = imageDatastore(simulationImagesFolder);
realData = imageDatastore(realImagesFolder);
Preview images from the simulation data set and real data set.
simImage = preview(simData);
realImage = preview(realData);
montage({simImage,realImage})

Load Simulation and Real Data



The real and simulated images look very different. Consequently, models trained on 
simulated data and evaluated on real data perform poorly due to domain shift. 

Load Simulation and Real Data



Load the simulation pixel label image data by using pixelLabelDatastore. A pixel label 
datastore encapsulates the pixel label data and the label ID to a class name mapping.
For this example, specify five classes useful for an automated driving application: road, 
background, pavement, sky, and car.
classes = [
    "Road"
    "Background"
    "Pavement"
    "Sky"
    "Car"
    ];
numClasses = numel(classes);

Load Pixel-Labeled Images for Simulation Data and Real Data



The simulation data set has eight classes. Reduce the number of classes from eight to five by 
grouping the building, tree, traffic signal, and light classes from the original data set into a 
single background class. Return the grouped label IDs by using the helper function 
simulationPixelLabelIDs. This helper function is attached to the example as a supporting file. 
labelIDs = simulationPixelLabelIDs;

Use the classes and label IDs to create a pixel label datastore of the simulation data.
simLabels = pixelLabelDatastore(simulationLabelsFolder,classes,labelIDs);

Initialize the colormap for the segmented images using the helper function 
domainAdaptationColorMap.
dmap = domainAdaptationColorMap;

Load Pixel-Labeled Images for Simulation Data and Real Data



Preview a pixel-labeled image by overlaying the label on top of the image using the 
labeloverlay function.
simImageLabel = preview(simLabels);
overlayImageSimulation = labeloverlay(simImage,simImageLabel,'ColorMap',dmap);
figure
imshow(overlayImageSimulation)
labelColorbar(dmap,classes);

Load Pixel-Labeled Images for Simulation Data and Real Data



Shift the simulation and real data used for training to zero center, to center the data around 
the origin, by using the transform function and the preprocessData helper function, defined 
in the Supporting Functions section. 
preprocessedSimData = transform(simData, @(simdata)preprocessData(simdata));
preprocessedRealData = transform(realData, @(realdata)preprocessData(realdata));

Use the combine function to combine the transformed image datastore and pixel label 
datastores of the simulation domain. The training process does not use the pixel labels of real 
data.
combinedSimData = combine(preprocessedSimData,simLabels);

Load Pixel-Labeled Images for Simulation Data and Real Data



This example modifies the VGG-16 network pretrained on ImageNet to a fully convolutional 
network. To enlarge the receptive fields, dilated convolutional layers with strides of 2 and 4 
are added. This makes the output feature map resolution one-eighth of the input size. Atrous 
spatial pyramid pooling (ASPP) is used to provide multiscale information and is followed by a 
resize2dlayer with an upsampling factor of 8 to resize the output to the size of the input. 
The AdaptSegNet generator network used in this example is illustrated in the following 
diagram.

Define AdaptSegNet Generator



To get a pretrained VGG-16 network, install the Deep Learning Toolbox™ Model for VGG-16 
Network.
net = vgg16;

To make the VGG-16 network suitable for semantic segmentation, remove all VGG layers 
after 'relu4_3'. 
vggLayers = net.Layers(2:24);

Create an image input layer of size 1280-by-720-by-3 for the generator.
inputSizeGenerator = [1280 720 3];
inputLayer = 
imageInputLayer(inputSizeGenerator,'Normalization','None','Name','inputLayer');

Define AdaptSegNet Generator



Create fully convolutional network layers. Use dilation factors of 2 and 4 to enlarge the 
respective fields.
fcnlayers = [
    convolution2dLayer([3 3], 360,'DilationFactor',[2 2],'Padding',[2 2 2 2],'Name','conv5_1', 
'WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu5_1')
    convolution2dLayer([3 3], 360,'DilationFactor',[2 2],'Padding',[2 2 2 2] ,'Name','conv5_2', 
'WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu5_2')
    convolution2dLayer([3 3], 360,'DilationFactor',[2 2],'Padding',[2 2 2 2],'Name','conv5_3', 
'WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu5_3')
    convolution2dLayer([3 3], 480,'DilationFactor',[4 4],'Padding',[4 4 4 4],'Name','conv6_1', 
'WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu6_1')
    convolution2dLayer([3 3], 480,'DilationFactor',[4 4],'Padding',[4 4 4 4] ,'Name','conv6_2', 
'WeightsInitializer','narrow-normal','BiasInitializer','zeros')
    reluLayer('Name','relu6_2')
    ];

Define AdaptSegNet Generator



Combine the layers and create the layer graph.
layers = [
    inputLayer
    vggLayers
    fcnlayers
    ];
lgraph = layerGraph(layers);

ASPP is used to provide multiscale information. Add the ASPP module to the layer graph with 
a filter size equal to the number of channels by using the addASPPToNetwork helper function, 
defined in the Supporting Functions section.
lgraph  = addASPPToNetwork(lgraph, numClasses);

Define AdaptSegNet Generator



Define AdaptSegNet Generator



Apply resize2dLayer with an upsampling factor of 8 to make the output match the size of the 
input.
upSampleLayer = 
resize2dLayer('Scale',8,'Method','bilinear','Name','resizeLayer');
lgraphGenerator = addLayers(lgraph,upSampleLayer);
lgraphGenerator = 
connectLayers(lgraphGenerator,'additionLayer','resizeLayer');

Visualize the generator network in a plot. 
plot(lgraphGenerator)
title("Generator")

Define AdaptSegNet Generator



The discriminator network consists of five convolutional layers with a kernel size of 3 and a 
stride of 2, where the number of channels is {64, 128, 256, 512, 1}. Each layer is followed by a 
leaky ReLU layer parameterized by a scale of 0.2, except for the last layer. resize2dLayer is 
used to resize the output of the discriminator. Note that this example does not use batch 
normalization, as the discriminator is jointly trained with the segmentation network using a 
small batch size.
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Define AdaptSeg Discriminator



Create an image input layer of size 1280-by-720-by-numClasses that takes in the 
segmentation predictions of the simulation and real domains.
inputSizeDiscriminator = [1280 720 numClasses];

Define AdaptSeg Discriminator



Create fully convolutional layers and generate the discriminator layer graph.

numChannelsFactor = 64;   % Factor for number of channels in convolution layer.
resizeScale = 64;   % Scale factor to resize the output of the discriminator.
leakyReLUScale = 0.2;% Scalar multiplier for leaky ReLU layers.
% Create the layers of the discriminator.
layers = [
imageInputLayer(inputSizeDiscriminator,'Normalization','none','Name','inputLayer')    
convolution2dLayer(3,numChannelsFactor,'Stride',2,'Padding',1,'Name','conv1', 
'WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
leakyReluLayer(leakyReLUScale,'Name','lrelu1')    
convolution2dLayer(3,numChannelsFactor*2,'Stride',2,'Padding',1,'Name','conv2', 
'WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
leakyReluLayer(leakyReLUScale,'Name','lrelu2')    
convolution2dLayer(3,numChannelsFactor*4,'Stride',2,'Padding',1,'Name','conv3', 
'WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
leakyReluLayer(leakyReLUScale,'Name','lrelu3')    
convolution2dLayer(3,numChannelsFactor*8,'Stride',2,'Padding',1,'Name','conv4', 
'WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
leakyReluLayer(leakyReLUScale,'Name','lrelu4')
convolution2dLayer(3,1,'Stride',2,'Padding',1,'Name','classifer',                       
'WeightsInitializer','narrow-normal','BiasInitializer','narrow-normal')
resize2dLayer('Scale', resizeScale,'Method','bilinear','Name','resizeLayer');  ];

% Create the layer graph of the discriminator.
lgraphDiscriminator  = layerGraph(layers);



Visualize the discriminator network in a plot. 
plot(lgraphDiscriminator)
title("Discriminator")

Define AdaptSeg Discriminator



• Set the total number of iterations to 5000. By doing so, you train the network for around 
10 epochs.

• Set the learning rate for the generator to 2.5e-4.
• Set the learning rate for the discriminator to 1e-4.
• Set the L2 regularization factor to 0.0005.
• The learning rate exponentially decreases based on the formula                                            . 

This decrease helps to stabilize the gradients at higher iterations. Set the power to 0.9.
• Set the weight of the adversarial loss to 0.001.
• Initialize the velocity of the gradient as [ ]. This value is used by SGDM to store the velocity 

of the gradients.
• Initialize the moving average of the parameter gradients as [ ]. This value is used by Adam 

initializer to store the average of parameter gradients.
• Initialize the moving average of squared parameter gradients as [ ]. This value is used by 

Adam initializer to store the average of the squared parameter gradients.
• Set the mini-batch size to 1.

Specify Training Options



Specify Training Options



Train on a GPU, if one is available. To automatically detect if you have a GPU available, set 
executionEnvironment to "auto". If you do not have a GPU, or do not want to use one for 
training, set executionEnvironment to "cpu". To ensure the use of a GPU for training, set 
executionEnvironment to "gpu". 
executionEnvironment = "auto";

Create the minibatchqueue object from the combined datastore of the simulation domain. 
mbqTrainingDataSimulation =  
minibatchqueue(combinedSimData,"MiniBatchSize",miniBatchSize, ...
    "MiniBatchFormat","SSCB","OutputEnvironment",executionEnvironment);

Create the minibatchqueue object from the input image datastore of the real domain. 
mbqTrainingDataReal = 
minibatchqueue(preprocessedRealData,"MiniBatchSize",miniBatchSize, ... 
    "MiniBatchFormat","SSCB","OutputEnvironment",executionEnvironment);

Specify Training Options



Train the model using a custom training loop. The helper function modelGradients calculate 
the gradients and losses for the generator and discriminator. Create the training progress plot 
using configureTrainingLossPlotter, attached to this example as a supporting file, and update 
the training progress using updateTrainingPlots. Loop over the training data and update the 
network parameters at each iteration. For each iteration: 
• Read the image and label information from the minibatchqueue object of the simulation 

data using the next function.
• Read the image information from the minibatchqueue object of the real data using the 

next function.
• Evaluate the model gradients using dlfeval and the modelGradients helper function, 

defined in the Supporting Functions section. modelGradients returns the gradients of the 
loss with respect to the learnable parameters.

• Update the generator network parameters using the sgdmupdate function.
• Update the discriminator network parameters using the adamupdate function. 
• Update the training progress plot for every iteration and display various computed losses.

Train Model
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Train Model



Evaluate the performance of the trained AdaptSegNet network by computing the mean IoU 
for the test data predictions. 
Load the test data using imageDatastore.
realTestData = imageDatastore(realTestImagesFolder);
The CamVid data set has 32 classes. Use the realpixelLabelIDs helper function to reduce the 
number of classes to five, as for the simulation data set. The realpixelLabelIDs helper function 
is attached to this example as a supporting file.
labelIDs = realPixelLabelIDs;
Use pixelLabelDatastore to load the ground truth label images for the test data.
realTestLabels = pixelLabelDatastore(realTestLabelsFolder,classes,labelIDs);

Evaluate Model on Real Test Data



Shift the data to zero center to center the data around the origin, as for the training data, by 
using the transform function and the preprocessData helper function, defined in the 
Supporting Functions section.
preprocessedRealTestData = transform(realTestData, @(realtestdata)preprocessData(realtestdata));

Use combine to combine the transformed image datastore and pixel label datastores of the 
real test data.
combinedRealTestData = combine(preprocessedRealTestData,realTestLabels);

Create the minibatchqueue object from the combined datastore of the test data. Set 
"MiniBatchSize" to 1 for ease of evaluating the metrics.
mbqimdsTest = minibatchqueue(combinedRealTestData,"MiniBatchSize",1,...
    "MiniBatchFormat","SSCB","OutputEnvironment",executionEnvironment);

To generate the confusion matrix cell array, use the helper function 
predictSegmentationLabelsOnTestSet on minibatchqueue object of test data. 
imageSetConfusionMat = predictSegmentationLabelsOnTestSet(dlnetGenerator,mbqimdsTest);

Evaluate Model on Real Test Data



Use evaluateSemanticSegmentation to measure semantic segmentation metrics on the test 
set confusion matrix. 
metrics = 
evaluateSemanticSegmentation(imageSetConfusionMat,classes,'Verbose',false);
To see the data set level metrics, inspect metrics.DataSetMetrics.
metrics.DataSetMetrics
The data set metrics provide a high-level overview of network performance. To see the 
impact each class has on the overall performance, inspect the per-class metrics using 
metrics.ClassMetrics.
metrics.ClassMetrics

Evaluate Model on Real Test Data



The data set performance is good, but the class metrics show that the car and pavement 
classes are not segmented well. Training the network using additional data can yield 
improved results.

Evaluate Model on Real Test Data



Run the trained network on one test image to check the segmented output prediction.
Segment Image



Display the results.
figure
imshow(segmentedImage);
labelColorbar(dmap,classes);

Segment Image



Compare the label results with the expected ground truth stored in realTestLabels. The green 
and magenta regions highlight areas where the segmentation results differ from the expected 
ground truth.
expectedResult = readimage(realTestLabels,350);
actual = uint8(gather(extractdata(labels)));
expected = uint8(expectedResult);
figure
imshowpair(actual,expected)

Segment Image



The helper function modelGradients calculates the gradients and adversarial loss for the 
generator and discriminator. The function also calculates the segmentation loss for the 
generator and the cross-entropy loss for the discriminator. As no state information is required 
to be remembered between the iterations for both generator and discriminator networks, 
the states are not updated.

Model Gradients Function
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The helper function segmentationLoss computes the feature segmentation loss, which is 
defined as the cross-entropy loss for the generator using the simulation data and its 
respective ground truth. The helper function computes the loss by using the crossentropy 
function.

Segmentation Loss Function



The helper function addASPPToNetwork creates the atrous spatial pyramid pooling (ASPP) 
layers and adds them to the input layer graph. The function returns the layer graph with ASPP 
layers connected to it.

addASPPToNetwork  Function
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The helper function predictSegmentationLabelsOnTestSet calculates the confusion matrix of 
the predicted and ground truth labels using the segmentationConfusionMatrix function.
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predictSegmentationLabelsOnTestSet   Function



The helper function piecewiseLearningRate computes the current learning rate based on the 
iteration number.

piecewiseLearningRate Function



The helper function preprocessData performs a zero center shift by subtracting the number 
of the image channels by the respective mean.

preprocessData Function



%Generate Image from Segmentation Map Using Deep Learning
openExample('deeplearning_shared/SynthesizeSegmentationMapUsingDeepLearningExample')

%Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data
openExample('deeplearning_shared/TrainADeepLearningSemanticSegmentationNetUsing3DSimDataExample')

Example code


