
Definite Clause Grammars

Contents

• Definite Clause Grammars
• Grammar rules in Prolog
• How Prolog uses grammar rules
• Adding arguments and Prolog goals
• Explanation of Difference Lists
• DCG Recognisers
• Extracting meaning using a DCG
• A Grammar for Extracting Meaning.

Definite Clause Grammars
• DCGs can be used in a variety of applications:

besides the analysis and description of language,
whether natural or formal, general operations on
lists, which are essential in a multitude of programs,
can also be described by them.

• The notation of DCGs offers the possibility to
express grammars with simple rules. This makes
them a good choice for getting into declarative and
logical programming.

• If knowledge exists, however, the functionality can
be extended by nesting normal Prolog code.

Definite Clause Grammars
In order to parse sentences like:

• a cat eats the fish.
• the cat eats a fish.
• a fish eats the cat.
• the fish eat a fish.

Definite Clause Grammars
sentence(S1, S3) :-
 noum_phrase(S1, S2),
 verb_phrase(S2, S3).
noun_phrase(S1, S3) :-
 det(S1, S2),
 noun(S2, S3).
verb_phrase(S1, S3) :-
 verb(S1, S2),
 noun_phrase(S2, S3).
det([the|X], X).
det([a|X], X).
noun([cat|X], X).
noun([fish|X], X).
verb([eats|X], X).

sentence --> noun_phrase, verb_phrase.
noun_phrase --> det, noun.
verb_phrase --> verb, noun_phrase.
det --> [the].
det --> [a].
noun --> [cat].
noun --> [fish].
verb --> [eats].

DCG

sentence(S1, S3) :-
 noum_phrase(S1, S2),
 verb_phrase(S2, S3).
noun_phrase(S1, S3) :-
 det(S1, S2),
 noun(S2, S3).
verb_phrase(S1, S3) :-
 verb(S1, S2),
 noun_phrase(S2, S3).
det([the|X], X).
det([a|X], X).
noun([cat|X], X).
noun([fish|X], X).
verb([eats|X], X).

Difference Lists

sentence(Sentence) :-
 append(NounPhrase, VerbPhrase, Sentence),
 nounPhrase(NounPhrase),
 verbPhrase(VerbPhrase).
nounPhrase(Phrase) :-
 append(Det, Noun, Phrase),
 det(Det),
 noun(Noun).
verbPhrase(Phrase) :-
 append(Verb, NounPhrase, Phrase),
 verb(Verb),
 nounPhrase(NounPhrase).
det([the]).
det([a]).
noun([cat]).
noun([fish]).
verb([eats]).

Definite Clause Grammars
• A grammar is a precise definition of which sequences of

words or symbols belong to some language.

• Grammars are particularly useful for natural language
processing: the computational processing of human
languages, like English.

• But they can be used to process any precisely defined
'language', such as the commands allowed in some human-
computer interface.

• Prolog provides a notational extension called DCG (definite
Clause Grammar) that allows the direct implementation of
formal grammars.

Grammar rules
• In general, a grammar is defined as a collection of grammar

rules. These are sometimes called rewrite rules, since they
show how we can rewrite one thing as something else.

• In linguistics, a typical grammar rule for English might look
like this:

sentence  noun_phrase, verb_phrase
 e.g “ The man ran.”

• This would show that, in English, a sentence could be
constructed as a noun phrase, followed by a verb phrase.

• Other rules would then define how a noun phrase, and a verb
phrase, might be constructed. For example:

noun_phrase  noun
noun_phrase  determiner, noun
verb_phrase  intransitive_verb
verb_phrase  transitive_verb, noun_phrase

Terminals and non-terminals
• In these rules, symbols like sentence, noun, verb, etc., are

used to show the structure of the language, but they don't go
as far down as individual ‘words’ in the language.

• Such symbols are called non-terminal symbols, because we
can't stop there.

• In defining grammar rules for noun, though, we can say:
noun  [ball]
noun  [dog]
noun  [stick]
noun  [‘Edinburgh’]

• Here, ‘ball’, ‘dog’, ‘stick’ and ‘Edinburgh’ are words in the
language itself.

• These are called the terminal symbols, because we can't go
any further. They can't be expanded any more.

Grammar rules in Prolog
• Prolog allows us to directly implement grammars of this form.
• In place of the  arrow, we have a special operator: -->.
• So, we can write the same rules as:

sentence --> noun_phrase, verb_phrase.

noun_phrase --> noun.
noun_phrase --> determiner, noun.
verb_phrase --> intransitive_verb.

 verb_phrase --> transitive_verb, noun_phrase.

• Here, each non-terminal symbol is like a predicate with no
arguments.

• Terminal symbols are represented as lists containing one atom
noun --> [ball].
noun --> [dog].
noun --> [stick].
noun --> ['Edinburgh'].

Proper nouns must be written
as strings otherwise they are

interpreted as variables.

How Prolog uses grammar rules
• Prolog converts DCG rules into an internal representation which

makes them conventional Prolog clauses.
– This can be seen by ‘listing’ the consulted code.

• Non-terminals are given two extra arguments, so:
sentence --> noun_phrase, verb_phrase.

 becomes: sentence(In, Out) :-

 noun_phrase(In, Temp),
 verb_phrase(Temp, Out).

• This means: some sequence of symbols In, can be recognised
as a sentence, leaving Out as a remainder, if
– a noun phrase can be found at the start of In, leaving Temp as a

remainder,
– and a verb phrase can be found at the start of Temp, leaving Out as a

remainder.

How Prolog uses grammar rules (2)

• Terminal symbols are represented using the special predicate
'C', which has three arguments. So:

noun --> [ball].

becomes: noun(In, Out) :-

 'C'(In, ball, Out).

• This means: some sequence of symbols In can be recognised
as a noun, leaving Out as a remainder, if the atom ball can be
found at the start of that sequence, leaving Out as a remainder.

• The built-in predicate 'C' is very simply defined:

'C'([Term|List], Term, List).

where it succeeds if its second argument is the head of its first
argument, and the third argument is the remainder.

A very simple grammar
• Here's a very simple little grammar, which defines a very small

subset of English:
sentence --> noun, verb_phrase.

 verb_phrase --> verb, noun.
 noun --> [bob].
 noun --> [david].
 noun --> [annie].
 verb --> [likes].
 verb --> [hates].
 verb --> [runs].

• We can now use the grammar to test whether some sequence
of symbols belongs to the language:
| ?- sentence([bob, likes, annie], []).

 yes
| ?- sentence([bob, runs], []).

 no

Need to write an extra
rule for intransitive verbs.

A very simple grammar (2)
• By specifying that the remainder is an empty list we can use

the grammar to generate all of the possible sentences in the
language:
 | ?- sentence(X, []).

 X = [bob,likes,bob] ? ;
 X = [bob,likes,david] ? ;
 X = [bob,likes,annie] ? ;
 X = [bob,hates,bob] ? ;
 X = [bob,hates,david] ? ;

• It would be much more useful if we could do something with
the sequence of symbols, such as converting it into some
internal form for processing, or translating it into another
language.

• We can do this very powerfully with DCGs, by building a
parser, rather than a recogniser.

This is a recogniser. It will tell
us whether some sequence of
symbols is in a language or not.
This has limited usefulness.

Adding Arguments
• We can add our own arguments to the non-terminals in DCG

rules, for whatever reasons we choose.
• As an example, we can very simply add number agreement

(singular or plural) between the subject of an English
sentence and the main verb.

sentence --> noun(Num), verb_phrase(Num).

 verb_phrase(Num) --> verb(Num), noun(_).
 noun(singular) --> [bob].
 noun(plural) --> [students].
 verb(singular) --> [likes].
 verb(plural) --> [like].

• So now:
| ?- sentence([bob, likes, students], []).

 yes
| ?- sentence([students, likes, bob], []).

 no

Adding Prolog goals
• If we need to, we can add Prolog goals to any DCG rule.
• They need to be put inside { } brackets, so that Prolog knows

they're to be processed as Prolog, and not as part of the DCG
itself.

• Let's say that within some grammar, we wanted to be able to
say that some symbol had to be an integer between 1 and
100 inclusive. We could write a separate rule for each number:

num1to100 --> [1].
 num1to100 --> [2].
 num1to100 --> [3].
 num1to100 --> [4].
 ...
 num1to100 --> [100].

• But using a Prolog goal, there's a much easier way:
num1to100 --> [X], {integer(X), X >= 1, X =< 100}.

Difference Lists
• We call our grammar with a list of terminal symbols and an

empty list as we are checking that the first list conforms to the
grammar with nothing left over.
– sentence([the,man,ran],[]).

• We do this as the Prolog interpreter uses difference lists to
convert the DCG rules into conventional code.

• The difference list representation is a way of expressing how
two lists intersect.

• Any list can be represented as the difference between two lists:

[the,little,blue,man] can be represented as the difference between:
[the,little,blue,man]-[]
[the,little,blue,man,who,swam]-[who,swam]
[the,little,blue,man,called,bob]-[called,bob]

Difference Lists (2)
• The Prolog interpreter converts

sentence --> noun_phrase, verb_phrase.

• into conventional Prolog code using difference lists that can
be read as: The difference of lists In and Out is a sentence if

 the difference between In and Temp is a noun phrase and
 the difference between Temp and Out is a verb phrase.

[the,man] [ran] [and,ran]

NP VP

Out
Temp

In

sentence([the,man,ran,and,ran],[and,ran]):-
noun_phrase([the,man],[ran,and,ran]),
verb_phrase([ran],[and,ran]).

Diff. Lists: An Efficient Append
append([],L2,L2).

append([H|T],L2,[H|Out]):-
append(T,L2,Out).

• append/2 is a highly inefficient way of combining two lists.
?- append([a,b,c],[d],X).

append([b,c],[d],X1) where X1 = [a|X2]
 append([c],[d],X2) where X2 = [b|X3]
 append([],[d],X3) where X3 = [c|X4]

 true. where X4 = [d]

• It must first recurse through the whole of the first list before
adding its elements to the front of the second list.

• As the first list increases in length as does the number of
recursions needed.

• If we represent the lists as difference lists we can append the
second list directly to the end of the first list.

Diff. Lists: An Efficient Append (2)
• We can represent any list as the difference between two lists:

[a,b,c] can be represented as
[a,b,c]-[] or [a,b,c,d,e]-[d,e] or [a,b,c|T]-T

Where ‘T’ can be any list of symbols.
• As the second member of the pair refers to the end of the list

it can be directly accessed.
• This allows us to define a version of append that just uses

unification to append two lists L1 and L2 to make L3.
append(A1-Z1, Z1-Z2, A1-Z2).

• When L1 is represented by A1-Z1, and L2 by A2-Z2
the result L3 is A1-Z2 if Z1=A2.

L1 L2

A1 A2

L3

Z1 Z2

Diff. Lists: An Efficient Append (3)
• If we replace our usual append definition by this one line we

can append without recursion.
append(A1-Z1, Z1-Z2, A1-Z2).

?- append([a,b,c|Z1]-Z1, [d,e|Z2]-Z2, L).
L = [a,b,c,d,e|Z2]-Z2,
Z1 = [d,e|Z2] ?

• A clean append can then be achieved by specifying that Z2 is
an empty list.

| ?- append([a,b,c|Z1]-Z1, [d,e]-[], A1-[]).

1 Call: append([a,b,c|_506]-_506,[d,e]-[],_608-[]) ?
1 Exit: append([a,b,c,d,e]-[d,e],[d,e][],[a,b,c,d,e]-[]) ?
A1 = [a,b,c,d,e],
Z1 = [d,e] ?
yes

Definite Clause Grammars Summary

• We can use the --> DCG operator in Prolog to define
grammars for any language.

• The grammar rules consist of non-terminal symbols (e.g. NP,
VP) which define the structure of the language and terminal
symbols (e.g. Noun, Verb) which are the words in our language.

• The Prolog interpreter converts the DCG notation into
conventional Prolog code using difference lists.

• We can add arguments to non-terminal symbols in our
grammar for any reason (e.g. number agreement).

• We can also add pure Prolog code to the right-hand side of a
DCG rule by enclosing it in { }.

DCG Recognisers
• We can write simple grammars using the DCG notation that

recognise if a string of words (represented as a list of atoms)
belongs to the language.

sentence --> noun, verb_phrase.
 verb_phrase --> verb, noun.
 noun --> [bob].
 noun --> [david].
 noun --> [annie].
 verb --> [likes].
 verb --> [hates].
 verb --> [runs].

|?- sentence([annie, hates, david],[]).
yes

 However, this is of limited usefulness. Ideally we would like to
interpret the input in some way: to understand it, parse it, or
convert it into some other more useful form.

DCG: Parsers
• A parser represents a string as some kind of structure that can

be used to understand the role of each of its elements.
• A common representation is a parse tree which shows how

input breaks down into its grammatical constituents.

[the, pumpkin, scares, the, lecturer]

sentence

noun_phrase verb_phrase

determiner noun verb noun_phrase

determiner noun

Two parsing techniques
There are generally two ways of using DCGs to build a structural
representation of the input.
1. Computing the structure once the constituents of the input

have been identified.
• Partial results can be passed via extra arguments in non-terminal

symbols and computed to create a suitably representative result.
• For example, we might want our DCG to represent a number

expressed as a string as an integer.
number(N) --> digit(D), [hundred], {N is (D * 100)}.

digit(1) --> [one].

|?- number(X, [one, hundred], []).
X = 100?
yes

 This is only good for summary representations; it doesn’t tell
us anything about the internal structure of our input.

Two parsing techniques (2)
2. The more popular method is to use unification to identify the

grammatical role of each word and show how they combine
into larger grammatical structures.
• This creates a representation similar to a parse tree.
sentence(s(NP,VP)) -->

noun_phrase(NP), verb_phrase(VP).

• Which can be read as:
The parsed structure of a sentence must be s(NP,VP),
 where NP is the parsed structure of the noun phrase, and
 VP is the parsed structure of the verb phrase.

• The rules for NPs and VPs would then need to be augmented
so that they also represent a parse of their constituents in the
head of the rule.

Example: parsing English
• So lets take a small grammar which defines a tiny fragment of

the English language and add arguments so that it can
produce a parse of the input.

Original grammar rules:
 sentence --> noun_phrase(Num), verb_phrase(Num).

noun_phrase(Num) --> determiner(Num), noun_phrase2(Num).
 noun_phrase(Num) --> noun_phrase2(Num).

 noun_phrase2(Num) --> adjective, noun_phrase2(Num).
 noun_phrase2(Num) --> noun(Num).

verb_phrase(Num) --> verb(Num).
verb_phrase(Num) --> verb(Num), noun_phrase(_).

• Note the use of an argument to enforce number agreement
between noun phrases and verb phrases.

Example: parsing English (2)
• Now we can add a new argument to each non-terminal to

represent its structure.
sentence(s(NP,VP)) -->

noun_phrase(NP,Num), verb_phrase(VP,Num).

 noun_phrase(np(DET, NP2), Num) -->
 determiner(DET, Num), noun_phrase2(NP2, Num).

noun_phrase(np(NP2), Num) -->
 noun_phrase2(NP2, Num).

 noun_phrase2(np2(N), Num) --> noun(N, Num).

 noun_phrase2(np2(ADJ, NP2), Num) -->
 adjective(ADJ), noun_phrase2(NP2, Num).

 verb_phrase(vp(V), Num) --> verb(V, Num).

 verb_phrase(vp(V, NP), Num) -->
 verb(V, Num), noun_phrase(NP, _).

Example: parsing English (3)
• We also need to add extra arguments to the terminal symbols

i.e. the lexicon.
 determiner(det(the), _) --> [the].

 determiner(det(a), singular) --> [a].

 noun(n(pumpkin), singular) --> [pumpkin].
 noun(n(pumpkins), plural) --> [pumpkins].
 noun(n(lecturer), singular) --> [lecturer].
 noun(n(lecturers), plural) --> [lecturers].

 adjective(adj(possessed)) --> [possessed].

verb(v(scares), singular) --> [scares].
 verb(v(scare), plural) --> [scare].

• We represent the terminal symbols as the actual word from the
language and its grammatical role. The rest of the grammatical
structure is then built around these terminal symbols.

Using the parser.
• Now as a consequence of recognising the input, the grammar

constructs a term representing the constituent structure of the
sentence.

• This term is the 1st argument of sentence/3 with the 2nd
argument the input list and the 3rd the remainder list (usually []).

|?-sentence(Struct,[the, pumpkin, scares, the, lecturer],[]).
Struct = s(np(det(the), np2(n(pumpkin))),

 vp(v(scares), np(det(the), np2(n(lecturer)))))?

• We can now generate all valid sentences and their structures
by making the 2nd argument a variable.

|?-sentence(X,Y,[]).
X = s(np(det(the),np2(adj(possessed),np2(n(lecturer)))),

 vp(v(scares),np(det(the),np2(n(pumpkin))))),
Y= [the,possessed,lecturer,scares,the,pumpkin]?;
……etc

Extracting meaning using a DCG
• Representing the structure of a sentence allows us to see the

beginnings of semantic relationships between words.

• Ideally we would like to take these relationships and represent
them in a way that could be used computationally.

• A common use of meaning extraction is as a natural language
interface for a database. The database can then be questioned
directly and the question converted into the appropriate internal
representation.

• One widely used representation is Logic as it can express
subtle semantic distinctions:
– e.g. “Every man loves a woman.” vs. “A man loves every woman.”

• Therefore, the logical structures of Prolog can also be used to
represent the meaning of a natural language sentence.

Logical Relationships
• Whenever we are programming in Prolog we are representing

meaning as logical relationships:
– e.g. “John paints.” = paints(john).
– e.g. “John likes Annie” = likes(john,annie).

• It is usually our job to make the conversion between natural
language and Prolog but it would be very useful if a DCG could
do it for us.

• To do this we need to add Prolog representations of meaning
(e.g. paints(john)) to the non-terminal heads of our grammar.
– Just as we added parse structures to our previous grammar,

e.g. sentence(s(NP,VP)) --> noun_phrase(NP,Num),
 verb_phrase(VP,Num).

– We can construct predicates that represent the relationship between the
terminal symbols of our language:
e.g. intrans_verb(Actor,paints(Actor)) --> [paints]

Adding meaning to a simple grammar
• Here is a simple DCG to recognise these sentences:
 sentence --> noun_phrase, verb_phrase

noun_phrase --> proper_noun.
verb_phrase --> intrans_verb.
verb_phrase --> trans_verb, noun_phrase.
intrans_verb --> [paints].
trans_verb --> [likes].
proper_noun --> [john].
proper_noun --> [annie].

| ?- sentence([john,likes,annie],[]).
yes

• To encode meaning we first need to represent nouns
as atoms. Prolog atoms are existential statements
e.g. john = “There exists an entity ‘john’ ”.

proper_noun(john) --> [john].
proper_noun(annie) --> [annie].

Adding meaning to a simple grammar (2)

• Now we need to represent the meaning of verbs.

• This is more difficult as their meaning is defined by their context
i.e. a noun phrase.

• We can represent this in Prolog as a property with a variable
entity. For example, the intransitive verb ‘paints’ needs an NP
as its actor: “Somebody paints” = paints(Somebody).

• We now need to ensure that this variable ‘Somebody’ is matched
with the NP that precedes the VP.

• To do this we need to make the argument of the Prolog term
(‘Somebody’) visible from outside of the term.

• We do this by adding another argument to the head of the rule.
e.g intrans_verb(Somebody,paints(Somebody)) --> [paints].

Adding meaning to a simple grammar (3)

• Now we need to ensure that this variable gets matched to the
NP at the sentence level.

• First the variable needs to be passed to the parent VP:
verb_phrase(Actor,VP) --> intrans_verb(Actor,VP).

• The Actor variable must then be linked to the NP at the
sentence level:
sentence(VP) --> noun_phrase(Actor), verb_phrase(Actor,VP).

• It now relates directly to the meaning derived from the NP.

• The logical structure of the VP is then passed back to the user
as an extra argument in sentence.

• If the grammar is more complex then the structure returned to
the user might be the product of more than just the VP.

Adding meaning to a simple grammar (4)
• Lastly, we need to define the transitive verb.
• This needs two arguments, a Subject and an Object.

trans_verb(Subject,Object,likes(Subject,Object)) --> [likes].

• The Subject needs to be bound to the initial NP and the
Object to the NP that is part of the VP.

verb_phrase(Subject,VP) --> trans_verb(Subject,Object,VP),
noun_phrase(Object).

• This binds the Subject to the initial NP at the sentence
level as it appears in the right position the verb_phrase
head.

A Grammar for Extracting Meaning.
• Now we have a grammar that can extract the

meaning of a sentence.
sentence(VP) --> noun_phrase(Actor),
verb_phrase(Actor,VP).

noun_phrase(NP) --> proper_noun(NP).

verb_phrase(Actor,VP) --> intrans_verb(Actor,VP).
verb_phrase(Actor,VP) --> trans_verb(Actor,Y,VP),

 noun_phrase(Y).

intrans_verb(Actor, paints(Actor)) --> [paints].

trans_verb(X,Y, likes(X,Y)) --> [likes].

proper_noun(john) --> [john].
proper_noun(annie) --> [annie].

A Grammar for Extracting Meaning.
• The meaning of specific sentences can be extracted:
| ?- sentence(X,[john,likes,annie],[]).

X = likes(john,annie) ? ;
no

• Or, all possible meanings can be generated:
| ?- sentence(X,Y,[]).

X = paints(john),
Y = [john,paints] ? ;

X = likes(john,john),
Y = [john,likes,john] ? ;

X = likes(john,annie),
Y = [john,likes,annie] ? ;

X = paints(annie),
Y = [annie,paints] ? ;

X = likes(annie,john),
Y = [annie,likes,john] ? ;

X = likes(annie,annie),
Y = [annie,likes,annie] ? ;

no

Extending the meaning
• By writing grammars that accept

– conjunctions (e.g. ‘and’),
– relative clauses (e.g. ‘that snores’ in ‘The man that

snores’),
– and conditionals (e.g. ‘I am blue if I am a dolphin’)

all forms of logical relationship in Prolog can be
extracted from strings of natural language.

