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RNN and LSTM

• A long short-term memory network is a type of recurrent 
neural network (RNN). LSTMs excel in learning, processing, 
and classifying sequential data. Common areas of application 
include sentiment analysis, language modeling, speech 
recognition, and video analysis.



Long Short-Term Memory Networks

• This section explains how to work with sequence and time 
series data for classification and regression tasks using long 
short-term memory (LSTM) networks. 

• An LSTM network is a type of recurrent neural network (RNN) 
that can learn long-term dependencies between time steps of 
sequence data.



LSTM Network Architecture

• The core components of an LSTM network are a sequence 
input layer and an LSTM layer. A sequence input layer inputs 
sequence or time series data into the network. An LSTM layer 
learns long-term dependencies between time steps of 
sequence data.



LSTM Network Architecture

• This diagram illustrates the architecture of a simple LSTM 
network for classification. The network starts with a sequence 
input layer followed by an LSTM layer. To predict class labels, 
the network ends with a fully connected layer, a softmax layer, 
and a classification output layer.



LSTM Network Architecture

• This diagram illustrates the architecture of a simple LSTM 
network for regression. The network starts with a sequence 
input layer followed by an LSTM layer. The network ends with 
a fully connected layer and a regression output layer.



LSTM Network Architecture

• This diagram illustrates the architecture of a network for 
video classification. To input image sequences to the network, 
use a sequence input layer. To use convolutional layers to 
extract features, use a sequence folding layer followed by the 
convolutional layers, and then a sequence unfolding layer. To 
use the LSTM layers to learn from sequences of vectors, use a 
flatten layer followed by the LSTM and output layers.



Classification LSTM Networks

• To create an LSTM network for sequence-to-label 
classification, create a layer array containing a sequence input 
layer, an LSTM layer, a fully connected layer, a softmax layer, 
and a classification output layer.

• Set the size of the sequence input layer to the number of 
features of the input data. Set the size of the fully connected 
layer to the number of classes. You do not need to specify the 
sequence length.

• For the LSTM layer, specify the number of hidden units and 
the output mode 'last'.



Classification LSTM Networks

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];



Classification LSTM Networks
• To create an LSTM network for sequence-to-sequence classification, use 

the same architecture as for sequence-to-label classification, but set the 
output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits,'OutputMode','sequence')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];



Regression LSTM Networks

• To create an LSTM network for sequence-to-one regression, 
create a layer array containing a sequence input layer, an 
LSTM layer, a fully connected layer, and a regression output 
layer.

• Set the size of the sequence input layer to the number of 
features of the input data. Set the size of the fully connected 
layer to the number of responses. You do not need to specify 
the sequence length.

• For the LSTM layer, specify the number of hidden units and 
the output mode 'last'.



Regression LSTM Networks

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;
layers = [ ...
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numResponses)
 regressionLayer];



Regression LSTM Networks
• To create an LSTM network for sequence-to-sequence regression, use the 

same architecture as for sequence-to-one regression, but set the output 
mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;
layers = [ ...
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits,'OutputMode','sequence')
 fullyConnectedLayer(numResponses)
 regressionLayer];



Video Classification Network

• To create a deep learning network for data containing 
sequences of images such as video data and medical images, 
specify image sequence input using the sequence input layer.

• To use convolutional layers to extract features, that is, to 
apply the convolutional operations to each frame of the 
videos independently, use a sequence folding layer followed 
by the convolutional layers, and then a sequence unfolding 
layer. To use the LSTM layers to learn from sequences of 
vectors, use a flatten layer followed by the LSTM and output 
layers.



inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;
layers = [ ...
 sequenceInputLayer(inputSize,'Name','input')
 sequenceFoldingLayer('Name','fold')
 convolution2dLayer(filterSize,numFilters,'Name','conv')
 batchNormalizationLayer('Name','bn')
 reluLayer('Name','relu')
 sequenceUnfoldingLayer('Name','unfold')
 flattenLayer('Name','flatten')
 lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
 fullyConnectedLayer(numClasses, 'Name','fc')
 softmaxLayer('Name','softmax')
 classificationLayer('Name','classification')];



Video Classification Network

• Convert the layers to a layer graph and connect the 
miniBatchSize output of the sequence folding layer to the 
corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');



Deeper LSTM Networks

• You can make LSTM networks deeper by inserting extra LSTM 
layers with the output mode 'sequence' before the LSTM layer. 
To prevent overfitting, you can insert dropout layers after the 
LSTM layers.

• For sequence-to-label classification networks, the output 
mode of the last LSTM layer must be 'last'.



Deeper LSTM Networks
numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits1,'OutputMode','sequence')
 dropoutLayer(0.2)
 lstmLayer(numHiddenUnits2,'OutputMode','last')
 dropoutLayer(0.2)
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];



• For sequence-to-sequence classification networks, the output mode of the 
last LSTM layer must be 'sequence'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits1,'OutputMode','sequence')
 dropoutLayer(0.2)
 lstmLayer(numHiddenUnits2,'OutputMode','sequence')
 dropoutLayer(0.2)
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];



Sequence Padding, Truncation, and Splitting

• LSTM networks support input data with varying sequence 
lengths. When passing data through the network, the 
software pads, truncates, or splits sequences so that all the 
sequences in each minibatch have the specified length. You 
can specify the sequence lengths and the value used to pad 
the sequences using the SequenceLength and 
SequencePaddingValue name-value pair arguments in 
trainingOptions.



Sort Sequences by Length

• To reduce the amount of padding or discarded data when 
padding or truncating sequences, try sorting your data by 
sequence length. To sort the data by sequence length, first get 
the number of columns of each sequence by applying size(X,2) 
to every sequence using cellfun. Then sort the sequence 
lengths using sort, and use the second output to reorder the 
original sequences.

sequenceLengths = cellfun(@(X) size(X,2), XTrain);
[sequenceLengthsSorted,idx] = sort(sequenceLengths);
XTrain = XTrain(idx);



Sort Sequences by Length

• The following figures show the sequence lengths of the sorted 
and unsorted data in bar charts.



Pad Sequences

• If you specify the sequence length 'longest', then the software 
pads the sequences so that all the sequences in a mini-batch 
have the same length as the longest sequence in the mini-
batch. This option is the default.



Pad Sequences

• The following figures illustrate the effect of setting 
'SequenceLength' to 'longest'.



Truncate Sequences

• If you specify the sequence length 'shortest', then the 
software truncates the sequences so that all the sequences in 
a mini-batch have the same length as the shortest sequence 
in that mini-batch. The remaining data in the sequences is 
discarded.



Truncate Sequences

• The following figures illustrate the effect of setting 
'SequenceLength' to 'shortest'.



Split Sequences

• If you set the sequence length to an integer value, then 
software pads all the sequences in a minibatch to the nearest 
multiple of the specified length that is greater than the 
longest sequence length in the mini-batch. Then, the software 
splits each sequence into smaller sequences of the specified 
length. If splitting occurs, then the software creates extra 
mini-batches.



Split Sequences

• Use this option if the full sequences do not fit in memory. 
Alternatively, you can try reducing the number of sequences 
per mini-batch by setting the 'MiniBatchSize' option in 
trainingOptions to a lower value.

• If you specify the sequence length as a positive integer, then 
the software processes the smaller sequences in consecutive 
iterations. The network updates the network state between 
the split sequences.



Split Sequences

• The following figures illustrate the effect of setting 
'SequenceLength' to 5.



Specify Padding Direction

• The location of the padding and truncation can impact 
training, classification, and prediction accuracy. Try setting the 
'SequencePaddingDirection' option in trainingOptions to 'left' 
or 'right' and see which is best for your data.

• Because LSTM layers process sequence data one time step at 
a time, when the layer OutputMode property is 'last', any 
padding in the final time steps can negatively influence the 
layer output. To pad or truncate sequence data on the left, set 
the 'SequencePaddingDirection' option to 'left'.



Specify Padding Direction

• For sequence-to-sequence networks (when the OutputMode 
property is 'sequence' for each LSTM layer), any padding in 
the first time steps can negatively influence the predictions 
for the earlier time steps. To pad or truncate sequence data 
on the right, set the 'SequencePaddingDirection' option to 
'right'.



Specify Padding Direction

• The following figures illustrate padding sequence data on the 
left and on the right.



Specify Padding Direction

• The following figures illustrate truncating sequence data on 
the left and on the right.



LSTM Layer Architecture



LSTM Layer Architecture



LSTM Layer Architecture

• The learnable weights of an LSTM layer are the input weights 
W (InputWeights), the recurrent weights R 
(RecurrentWeights), and the bias b (Bias). The matrices W, R, 
and b are concatenations of the input weights, the recurrent 
weights, and the bias of each component, respectively. 



Classify Text Data Using LSTM

• This example shows how to classify text data using a deep 
learning long short-term memory (LSTM) network.

• Text data is naturally sequential. A piece of text is a sequence 
of words, which might have dependencies between them. To 
learn and use long-term dependencies to classify sequence 
data, use an LSTM neural network. An LSTM network is a type 
of recurrent neural network (RNN) that can learn long-term 
dependencies between time steps of sequence data.



Classify Text Data Using LSTM

• To input text to an LSTM network, first convert the text data 
into numeric sequences. You can achieve this using a word 
encoding which maps documents to sequences of numeric 
indices. For better results, also include a word embedding 
layer in the network. Word embeddings map words in a 
vocabulary to numeric vectors rather than scalar indices. 
These embeddings capture semantic details of the words, so 
that words with similar meanings have similar vectors. They 
also model relationships between words through vector 
arithmetic. 



Classify Text Data Using LSTM

There are four steps in training and using the LSTM network in this 
example:
• Import and preprocess the data.
• Convert the words to numeric sequences using a word encoding.
• Create and train an LSTM network with a word embedding layer.
• Classify new text data using the trained LSTM network.



Import Data

• Import the factory reports data. This data contains labeled 
textual descriptions of factory events. To import the text data as 
strings, specify the text type to be 'string'.

filename = "factoryReports.csv";
data = readtable(filename,'TextType','string');
head(data)
ans=8×5 table
 Description     Category      Urgency        Resolution Cost 
 "Items are occasionally getting stuck in the scanner spools." "Mechanical Failure" 
"Medium" "Readjust Machine" 45
 



Import Data
• The goal of this example is to classify events by the label in the Category 

column. To divide the data into classes, convert these labels to categorical.
data.Category = categorical(data.Category);
• View the distribution of the classes in the data using a histogram.
figure
histogram(data.Category);
xlabel("Class")
ylabel("Frequency")
title("Class Distribution")



Import Data



Import Data

• The next step is to partition it into sets for training and validation. 
Partition the data into a training partition and a held-out 
partition for validation and testing. Specify the holdout 
percentage to be 20%.

cvp = cvpartition(data.Category,'Holdout',0.2);
dataTrain = data(training(cvp),:);
dataValidation = data(test(cvp),:);



Import Data

• Extract the text data and labels from the partitioned tables.

textDataTrain = dataTrain.Description;
textDataValidation = dataValidation.Description;
YTrain = dataTrain.Category;
YValidation = dataValidation.Category;



Import Data

• To check that you have imported the data correctly, visualize the 
training text data using a word cloud.

figure
wordcloud(textDataTrain);
title("Training Data")



Preprocess Text Data
• Create a function that tokenizes and preprocesses the text data. The function 

preprocessText, listed at the end of the example, performs these steps:
1 Tokenize the text using tokenizedDocument. 
2 Convert the text to lowercase using lower. 
3 Erase the punctuation using erasePunctuation.

• Preprocess the training data and the validation data using the preprocessText 
function.

documentsTrain = preprocessText(textDataTrain);
documentsValidation = preprocessText(textDataValidation);



Convert Document to Sequences

• To input the documents into an LSTM network, use a word 
encoding to convert the documents into sequences of numeric 
indices. To create a word encoding, use the wordEncoding 
function.

enc = wordEncoding(documentsTrain);



Convert Document to Sequences

• The next conversion step is to pad and truncate documents so 
they are all the same length. The trainingOptions function 
provides options to pad and truncate input sequences 
automatically. However, these options are not well suited for 
sequences of word vectors. Instead, pad and truncate the 
sequences manually. If you left-pad and truncate the sequences 
of word vectors, then the training might improve.



Convert Document to Sequences

• To pad and truncate the documents, first choose a target length, 
and then truncate documents that are longer than it and left-pad 
documents that are shorter than it. For best results, the target 
length should be short without discarding large amounts of data. 
To find a suitable target length, view a histogram of the training 
document lengths.



Convert Document to Sequences

documentLengths = doclength(documentsTrain);
figure
histogram(documentLengths)
title("Document Lengths")
xlabel("Length")
ylabel("Number of Documents")



Convert Document to Sequences

• Most of the training documents have fewer than 10 tokens. Use 
this as your target length for truncation and padding. Convert the 
documents to sequences of numeric indices using doc2sequence. 
To truncate or left-pad the sequences to have length 10, set the 
'Length' option to 10.

sequenceLength = 10;
XTrain = doc2sequence(enc,documentsTrain,'Length',sequenceLength);

• Convert the validation documents to sequences too.
XValidation = doc2sequence(enc,documentsValidation,'Length',sequenceLength);



Create and Train LSTM Network

• Define the LSTM network architecture. To input sequence data 
into the network, include a sequence input layer and set the 
input size to 1. Next, include a word embedding layer of 
dimension 50 and the same number of words as the word 
encoding. Next, include an LSTM layer and set the number of 
hidden units to 80. To use the LSTM layer for a sequence-to-label 
classification problem, set the output mode to 'last'. Finally, add 
a fully connected layer with the same size as the number of 
classes, a softmax layer, and a classification layer.



inputSize = 1;
embeddingDimension = 50;
numHiddenUnits = 80;
numWords = enc.NumWords;
numClasses = numel(categories(YTrain));
layers = [ ...
 sequenceInputLayer(inputSize)
 wordEmbeddingLayer(embeddingDimension,numWords)
 lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer]



Specify Training Options

Specify the training options:
• Train using the Adam solver.
• Specify a mini-batch size of 16.
• Shuffle the data every epoch.
• Monitor the training progress by setting the 'Plots' option 
to'training-progress'.
• Specify the validation data using the 'ValidationData' option.
• Suppress verbose output by setting the 'Verbose' option to false.



Specify Training Options

• By default, trainNetwork uses a GPU if one is available. 
Otherwise, it uses the CPU. To specify the execution 
environment manually, use the 'ExecutionEnvironment' 
name-value pair argument of trainingOptions. Training 
on a CPU can take significantly longer than training on a 
GPU.



Specify Training Options

options = trainingOptions('adam', ...
 'MiniBatchSize',16, ...
 'GradientThreshold',2, ...
 'Shuffle','every-epoch', ...
 'ValidationData',{XValidation,YValidation}, ...
 'Plots','training-progress', ...
 'Verbose',false);



• Train the LSTM network using the trainNetwork function.
net = trainNetwork(XTrain,YTrain,layers,options);



Predict Using New Data
• Classify the event type of three new reports. Create a string array containing 

the new reports.
reportsNew = [ ...
 "Coolant is pooling underneath sorter."
 "Sorter blows fuses at start up."
 "There are some very loud rattling sounds coming from the assembler."];

• Preprocess the text data using the preprocessing steps as the training 
documents.

documentsNew = preprocessText(reportsNew);



Predict Using New Data
• Convert the text data to sequences using doc2sequence with the same 

options as when creating the training sequences.
XNew = doc2sequence(enc,documentsNew,'Length',sequenceLength);

• Classify the new sequences using the trained LSTM network.
labelsNew = classify(net,XNew)
labelsNew = 3×1 categorical
 Leak 
 Electronic Failure 
 Mechanical Failure


